首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
pH,温度、离子强度及效应剂等对固定化烟草RuBP羧化酶在2.5mol/L尿素处理下的解离作用有各种不同的影响。在pH6.0时,仅小亚基从大亚基核(L_8)解离,当pH为中性偏碱时,大亚基核也解离。低温和低离子强度均促进酶的解离,而温度和离子强度对大亚基之间的解离的影响显著大于对大、小亚基之间的影响。这表明酶的亚基之间存在着不同的极性和疏水作用,而大亚基之间的疏水作用比大、小亚基之间的强。6-PG对大、小亚基之间解离的抑制作用表明大亚基上的催化位置与小亚基之间有一定的密切关系。  相似文献   

2.
以河西走廊荒漠地区不同生态型芦苇为研究材料,提取并纯化得Rubisco蛋白,经SDS-PAGE凝胶电泳将Rubisco大、小亚基分离,用Rubisco全酶蛋白及其大、小亚基分别注射昆明系雄性小白鼠制备抗体,经Western-blotting鉴定结果表明:(1)水芦Rubisco全酶抗体可与水芦、沙芦及菠菜Rubisco大亚基发生反应,而与小亚基均未见显色反应,且水芦显色最深,沙芦略浅,菠菜最浅;(2)水芦、沙芦Rubisco大亚基抗体可与水芦、沙芦、菠菜大亚基发生抗原交叉反应,且均不与小亚基发生反应,并且其与菠菜Rubisco大亚基的反应程度明显低于水芦和沙芦;(3)用与Rubisco大亚基抗体同样的制备方法,均未检测到水芦、沙芦Rubisco小亚基抗体的产生;(4)菠菜Rubisco全酶抗体可与菠菜、水芦、沙芦、水稻Rubisco大亚基均发生抗原交叉反应,但仅与其自身小亚基反应,且与菠菜Rubisco大亚基显色反应最深,水稻略浅,沙芦、水芦稍有反应.由此说明,水芦、沙芦Rubisco全酶蛋白及其大亚基免疫学特性差异较小,而与双子叶植物菠菜相比差异较大;水芦、沙芦Rubisco蛋白免疫化学决定簇的差异主要决定于小亚基上,且其小亚基不具有抗原活性或抗原活性较弱.  相似文献   

3.
利用固定化Rubisco大小亚基解离重组技术,进行水稻和烟草Rubisco大小亚基之间的分子杂交,实验表明,无论同源或异源的小亚基重组到固定化的大亚基上去后,其羧化酶活性没有明显的变化,但对加氧酶活性却有明显的影响。当水稻Rubisco的大亚基同烟草小亚基杂交重组后,其加氧酶活性同固定化水稻Rubisco相比有明显的增高,因而其羧化/氧化比值下降,并且接近于对照的固定化烟草Rubisco。反之,当烟草Rubisco的大亚基与水稻小亚基杂交重组后,其加氧酶活性同固定化烟草Rubisco相比有明显降低,因而其羧化/氧化比值升高,并接近于对照的固定化水稻Rubisco。由此推测,高等植物Rubisco的小亚基对酶的羧化/氧化比值有一定的影响。  相似文献   

4.
利用固定化Rubisco大小亚基解离重组技术,进行水稻和烟草Rubisco大小亚基之间的分子杂交,实验表明,无论同源或异源的小亚基重组到固定化的大亚基上去后,其羧化酶活性没有明显的变化,但对加氧酶活性却有明显的影响。当水稻Rubisco的大亚基同烟草小亚基杂交重组后,其加氧酶活性同固定化水稻Rubisco相比有明显的增高,因而其羧化/氧化比值下降,并且接近于对照的固定化烟草Rubisco。反之,当  相似文献   

5.
用~(35)S-Met在照光下与豌豆完整叶绿体保温,显示新合成的标记的RubisCO大亚基与结合蛋白形成一复合物,经ATP处理后解离为结合蛋白亚基,同时释放出的标记的RubisCO大亚基参与了RubisCO的装配。豌豆叶片提取液经热处理,硫酸铵分部,DEAE-Sepharose fast flow和Sephacryl S-300柱层析在ND-PAGE,SDS-PAGE上显示为一条带,估计纯度达90%以上,得率比以前报道的高12倍。纯化的结合蛋白表面巯基数经测定为12±1个,总巯基数为36±1个。远紫外CD光谱具有典型的α-螺旋结构的光谱特性,α-螺旋度为39%。此外,以纯化的豌豆结合蛋白制备了多克隆抗体。琼脂糖双扩散实验显示,结合蛋白的抗体与结合蛋白产生一条沉淀线,而与豌豆的RubisCO无沉淀反应,这表明所得到的抗体是高度专一的。  相似文献   

6.
H2O2对水稻Rubisco稳定性的影响   总被引:8,自引:0,他引:8  
H2 O2 浓度低于 2 0mmol·L-1时 ,Rubisco分子稳定 ;高于 2 0mmol·L-1则Rubisco的大亚基之间发生交联 ,全酶发生聚沉。H2 O2 处理后 ,Rubisco表面巯基数目减少 ,对两种蛋白水解酶尤其是胰蛋白酶的敏感性增强 ,大亚基水解明显增加。H2 O2 处理只会增加Rubisco大亚基的水解程度 ,不会造成新的水解位点  相似文献   

7.
(1)用硫酸铵分级,然后磷酸纤维素亲和层析得到了均一的蛇肌醛缩酶,凝胶过滤法测定全酶分子量为160,000,SDS-凝胶电泳法测定了它的亚基分子量为40,000,表明蛇肌醛缩酶是一个四亚基的酶,它属于醛缩酶I-A型。(2)甲醇或尿素对蛇肌醛缩酶和兔肌醛缩酶的影响是不同的。当用胰蛋白酶分别消化蛇肌醛缩酶和兔肌醛缩酶时,发现蛇肌醛缩酶对胰蛋白酶的作用更为敏感。甲醇或尿素对酶活性影响的结果说明蛇肌醛缩酶有更紧密的构象,酶分子内部的疏水键在维持活化型时起着重要的作用,在低有机溶剂浓度时不受影响,而在高有机溶剂浓度时分子内部疏水键才遭到破坏。此外蛇肌醛缩酶分子表面的极性基团,包括赖氨酸和精氨酸形成的离子对可能更易受到胰蛋白酶作用,同时它们可阻止低浓度甲醇与酶分子内疏水键作用。(3)醛缩酶和TNBS之间的反应支持酶分子的氨基,尤其是蛇肌醛缩酶的氨基在维护其天然构象中起着特殊作用的观点。(4)虽然蛇肌醛缩酶和兔肌醛缩酶的构象有一定的不同,但是仍然能够进行杂交产生蛇肌-兔肌醛缩酶杂交株组,说明它们亚基之间的结合区域的差别并不很大。  相似文献   

8.
蚯蚓体内一种纤溶酶原激活剂(e-PA)的分离纯化   总被引:22,自引:3,他引:19  
为获得一种高效,低廉的溶栓药物,从赤子爱胜蚓(Eiseniafaetida)体内分离纯化出一种可体外激活纤溶酶原从而间接降解纤维蛋白的酶(e-PA).纯化过程包括:粗品的盐析,离子交换层析,凝胶过滤层析及疏水相互作用层析.该组份是由二个亚基通过疏水相互作用维系在一起的.通过凝胶过滤层析,可测得全酶的分子量为45000;SDS电泳显示大、小亚基的分子量分别是26000与18000;而质谱法测得的大、小亚基的分子量分别为24556.7与15546.6.对大小亚基进行了氨基酸组成分析,结果显示大亚基不含Lys而小亚基不含Cys.测定了大亚基N端25个氨基酸序列:VIGGTNASPGEIPWQLSQQRQSGSW.并与部分已知蛋白质序列进行了比较.e-PA在纤维蛋白平板上表现有三种不同的纤溶活性  相似文献   

9.
(1)用硫酸铵分级,然后磷酸纤维素亲和层析得到了均一的蛇肌醛缩酶,凝胶过滤法测定全酶分子量为160,000,SDS-凝胶电泳法测定了它的亚基分子量为40,000,表明蛇肌醛缩酶是一个四亚基的酶,它属于醛缩酶Ⅰ-A 型。(2)甲醇或尿素对蛇肌醛缩酶和兔肌醛缩酶的影响是不同的。当用胰蛋白酶分别消化蛇肌醛缩酶和兔肌醛缩酶时,发现蛇肌醛缩酶对胰蛋白酶的作用更为敏感。甲醇或尿素对酶活性影响的结果说明蛇肌醛缩酶有更紧密的构象,酶分子内部的疏水键在维持活化型时起着重要的作用,在低有机溶剂浓度时不受影响,而在高有机溶剂浓度时分子内部疏水键才遭到破坏。此外蛇肌醛缩酶分子表面的极性基团,包括赖氨酸和精氨酸形成的离子对可能更易受到胰蛋白酶作用,同时它们可阻止低浓度甲醇与酶分子内疏水键作用。(3)醛缩酶和TNBS 之间的反应支持酶分子的氨基,尤其是蛇肌醛缩酶的氨基在维护其天然构象中起着特殊作用的观点。(4)虽然蛇肌醛缩酶和兔肌醛缩酶的构象有一定的不同,但是仍然能够进行杂交产生蛇肌-兔肌醛缩酶杂交株组,说明它们亚基之间的结合区域的差别并不很大。  相似文献   

10.
为了澄清海链藻属Thalassiosira的物种多样性, 采用毛细管复洗技术建立了单克隆培养株系。利用光镜和扫描电镜观察形态学特征, 并扩增其核糖体小亚基和大亚基序列, 用于分子系统树的构建。结合形态学和分子系统学数据, 发现艾伦海链藻株系之间存在一定的形态差异和遗传多样性。经过与原始文献的比对, 确认了艾伦海链藻原变种的特征, 并报道了该种的一个新变种艾伦海链藻肋纹变种Thalassiosira allenii var. striata X. H. Guo, Y. Q. Guo & Y. Li。该变种与原变种的形态特征基本相似, 区别在于壳面边缘具有肋纹结构, 原变种则无。基于核糖体小亚基和大亚基的系统树均显示, 肋纹变种与原变种聚在同一个分支上, 形成姐妹支(BPP>0.90), 表明两者之间具有最近的亲缘关系。2个变种的核糖体小亚基序列完全一致, 没有碱基差异。但用于分析的556个核糖体大亚基序列中, 两者存在11个差异碱基, 遗传距离为0.01。  相似文献   

11.
L C Huang  C Huang 《Biochemistry》1975,14(1):18-24
Protein kinase isolated from rabbit skeletal muscle can be reversibly converted from the cAMP dependent form to the indepent form by chaotropic salts and urea. A similar but irreversible conversion can also be induced by trypsin digestion of the holoenzyme. The dissociation of cAMP dependent protein kinase by low concentrations of thiocyanate raises the possibility of isolating both native regulatory and catalytic subunits. From various changes in enzymatic activity caused by urea and trypsin perturbation, it is proposed that the conversion of protein kinase from the cAMP dependent to the independent form is due primarily to preferential modification of the regulatory subunit of the holoenzyme.  相似文献   

12.
An expression plasmid incorporating the structural gene for the large subunit of a cyanobacterial ribulose-bisphosphate carboxylase, but not the gene for its complementary small subunit, directs the synthesis of large subunits in Escherichia coli. This provides a means for obtaining a preparation of large subunits completely devoid of small subunits, which is not otherwise achievable. In extracts, these large subunits were found predominantly in the form of octamers, but intersubunit interactions were weaker than in the holoenzyme, which contains eight small subunits as well as eight large subunits, and tended to be broken by procedures which separated octamers from lower oligomers and monomers. However, partial purification by anion-exchange chromatography was possible. The large subunits recognized the reaction-intermediate analog, 2'-carboxy-D-arabinitol 1,5-bisphosphate, thus enabling measurement of catalytic site concentrations, but the binding was much weaker than to the holoenzyme. E. coli-produced large subunits catalyzed carboxylation with a kcat of 1% of that of the holoenzyme and the substrate affinities were 3- to 5-fold weaker. They also assembled with heterologous small subunits isolated from spinach ribulose-P2 carboxylase with a 100-fold increase in catalytic activity under standard assay conditions. Since catalysis can proceed in their absence, the small subunits cannot be directly involved in the catalytic chemistry. Their stimulative influence upon catalysis must be exerted by conformational means.  相似文献   

13.
Z Hillel  C W Wu 《Biochemistry》1977,16(15):3334-3342
The quaternary structures of Escherichia coli DNA-dependent RNA polymerase holenzyme (alpha 2 beta beta' sigma) and core enzyme (alpha 2 beta beta') have been investigated by chemical cross-linking with a cleavable bifunctional reagent, methyl 4-mercaptobutyrimidate, and noncleavable reagents, dimethyl suberimidate and N,N'-(1,4-phenylene)bismaleimide. A model of the subunit organization deduced from cross-linked subunit neighbors identified by dodecyl sulfate-polyacrylamide gel electrophoresis indicates that the large beta and beta' subunits constitute the backbone of both core and holoenzyme, while sigma and two alpha subunits interact with this structure along the contact domain of beta and beta' subunits. In holoenzyme, sigma subunit is in the vicinity of at least one alpha subunit. The two alpha subunits are close to each other in holoenzyme, core enzyme, and the isolated alpha 2 beta complex. Cross-linking of the "premature" core and holoenzyme intermediates in the in vitro reconstitution of active enzyme from isolated subunits suggests that these species are composed of subunit complexes of molecular weight lower than that of native core and holoenzyme, respectively. The structural information obtained for RNA polymerase and its subcomplexes has important implications for the enzyme-promoter recognition as well as the mechanism of subunit assembly of the enzyme.  相似文献   

14.
K Paul  M K Morell    T J Andrews 《Plant physiology》1993,102(4):1129-1137
The first 20 residues at the amino terminus of the small subunit of spinach ribulose-1,5-bisphosphate carboxylase form an irregular arm that makes extensive contacts with the large subunit and also with another small subunit (S. Knight, I. Andersson, and C.-I. Brändén [1990] J Mol Biol 215: 113-160). The influence of these contacts on subunit binding and, indirectly, on catalysis was investigated by constructing truncations from the amino terminus of the small subunit of the highly homologous enzyme from Synechococcus PCC 6301 expressed in Escherichia coli. Removal of the first six residues (and thus the region of contact with a neighboring small subunit) affected neither the affinity with which the small subunits bound to the large subunits nor the catalytic properties of the assembled holoenzyme. Extending the truncation to include the first 12 residues (which encroaches into a highly conserved region that interacts with the large subunit) also did not weaken intersubunit binding appreciably, but it reduced the catalytic activity of the holoenzyme nearly 5-fold. Removal of an additional single residue (i.e. removal of a total of 13 residues) weakened intersubunit binding approximately 80-fold. Paradoxically, this partially restored catalytic activity to approximately 40% of that of the wild-type holoenzyme. None of these truncations materially affected the Km values for ribulose-1,5-bisphosphate or CO2. Removal of all 20 residues of the irregular arm (thereby deleting the conserved region of contact with large subunits) totally abolished the small subunit's ability to bind to large subunits to form a stable holoenzyme. However, this truncated small subunit was still synthesized by the E. coli cells. These data are interpreted in terms of the role of the amino-terminal arm of the small subunit in maintaining the structure of the holoenzyme.  相似文献   

15.
Protein phosphatase 2A (PP2A) holoenzyme is composed of a catalytic subunit, C, and two regulatory subunits, A and B. The A subunit is rod shaped and consists of 15 nonidentical repeats. According to our previous model, the B subunit binds to repeats 1 through 10 and the C subunit binds to repeats 11 through 15 of the A subunit. Another form of PP2A, core enzyme, is composed only of subunits A and C. It is generally believed that core enzyme does not exist in cells but is an artifact of enzyme purification. To study the structure and relative abundance of different forms of PP2A, we generated monoclonal antibodies against the native A subunit. Two antibodies, 5H4 and 1A12, recognized epitopes in repeat 1 near the N terminus and immunoprecipitated free A subunit and core enzyme but not holoenzyme. Another antibody, 6G3, recognized an epitope in repeat 15 at the C terminus and precipitated only the free A subunit. Monoclonal antibodies against a peptide corresponding to the N-terminal 11 amino acids of the A alpha subunit (designated 6F9) precipitated free A subunit, core enzyme, and holoenzyme. 6F9, but not 5H4, recognized holoenzymes containing either B, B', or B" subunits. These results demonstrate that B subunits from three unrelated gene families all bind to repeat 1 of the A subunit, and the results confirm and extend our model of the holoenzyme. By sequential immunoprecipitations with 5H4 or 1A12 followed by 6F9, core enzyme and holoenzyme in cytoplasmic extracts from 10T1/2 cells were completely separated and they exhibited the expected specificities towards phosphorylase a and retinoblastoma peptide as substrates. Quantitative analysis showed that under conditions which minimized proteolysis and dissociation of holoenzyme, core enzyme represented at least one-third of the total PP2A. We conclude that core enzyme is an abundant form in cells rather than an artifact of isolation. The biological implications of this finding are discussed.  相似文献   

16.
The synthesis in Escherichia coli of both the large and small subunits of cereal ribulose bisphosphate carboxylase/oxygenase has been obtained using expression plasmids and bacteriophages. The level and order of synthesis of the large and small subunits were regulated using different promoters, resulting in different subunit pool sizes and ratios that could be controlled in attempts to optimize the conditions for assembly. Neither assembly nor enzyme activity were observed for the higher plant enzyme. In contrast, cyanobacterial large and small subunits can assemble to give an active holoenzyme in Escherichia coli. By the use of deletion plasmids, followed by infection with appropriate phages, it can be demonstrated that the small subunit is essential for catalysis. However, the small subunit is not required for the assembly of a large subunit octomer core in the case of the Synechococcus enzyme; self-assembly of the octomer will occur in an rbcS deletion strain. The cyanobacterial small subunits can be replaced by wheat small subunits to give an active enzyme in Escherichia coli. The hybrid cyanobacterial large/wheat small subunit enzyme has only about 10% of the level of activity of the wild-type enzyme, reflecting the incomplete saturation of the small subunit binding sites on the large subunit octomer, and possibly a mismatch in the subunit interactions of those small subunits that do bind, giving rise to a lower rate of turnover at the active sites.Abbreviations IPTG isopropyl--D-thiogalactopyranoside - L large subunit - Rubisco ribulose bisphosphate carboxylase/oxygenase - S small subunit  相似文献   

17.
The dissociation of D-ribulose-1,5-bisphosphate carboxylase/oxygenase from spinach, which consists of eight large subunits (L, 53 kDa) and eight small subunits (S, 14 kDa) and thus has a quarternary structure L8S8, has been investigated using a variety of physical techniques. Gel chromatography using Sephadex G-100 indicates the quantitative dissociation of the small subunit S from the complex at 3-4 M urea (50 mM Tris/Cl pH 8.0, 0.5 mM EDTA, 1 mM dithiothreitol and 5 mM 2-mercaptoethanol). The dissociated S is monomeric. Analytical ultracentrifuge studies show that the core of large subunits, L, remaining at 3-4 M urea sediments with S20, w = 15.0 S, whereas the intact enzyme (L8S8) sediments with S20, w = 17.7S. The observed value is consistent with a quarternary structure L8. The dissociation reaction in 3-4 M urea can thus be represented by L8S8----L8 + 8S. At urea concentrations c greater than 5 M the L8 core dissociates into monomeric, unfolded large subunits. A large decrease in fluorescence emission intensity accompanies the dissociation of the small subunit S. This change is completed at 4 M urea. No changes are observed upon dissociating the L8 core. The kinetics of dissociation of the small subunit, as monitored by fluorescence spectroscopy, closely follow the kinetics of loss of carboxylase activity of the enzyme. Studies of the circular dichroism of D-ribulose-1,5-bisphosphate carboxylase in the wavelength region 200-260 nm indicate two conformational transitions. The first one ([0]220 from -8000 to -3500 deg cm2 dmol-1) is completed at 4 M urea and corresponds to the dissociation of the small subunit and coupled conformational changes. The second one ([0]220 from -3500 to -1200 deg cm2 dmol-1) is completed at 6 M urea and reflects the dissociation and unfolding of large subunits from the core. The effect of activation of the enzyme by addition of MgCl2 (10 mM) and NaHCO3 (10 mM) on these conformational transitions was investigated. The first conformational transition is then shifted to higher urea concentrations: a single transition ([0]220 from -8000 to -1200 deg cm2 dmol-1) is observed for the activated enzyme. From the urea dissociation experiments we conclude that both large (L) and small (S) subunits are important for carboxylase activity of spinach D-ribulose-1,5-bisphosphate carboxylase: the L-S subunit interactions tighten upon activation and dissociation of S leads to a coupled, proportional loss of enzyme activity.  相似文献   

18.
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and a 66-kD protein were co-purified from solubilized microsomal preparations of the green alga Botryococcus braunii by Green A agarose, sucrose density gradient, MonoQ, and gel filtration. The 66-kD protein remained intact after 6 M urea treatment and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It could be detected in the soluble fraction of the cell-free extract but appeared to be more abundant in the microsomal preparations. It cross-reacted with antibodies raised against Rubisco holoenzyme, large and small subunits, indicating that the 66-kD protein contains both the large and the small subunits of Rubisco. The N-terminal amino acid sequence of this protein and that of a proteolytic fragment showed high homology with the mature Rubisco small subunits, and the sequence of another proteolytic fragment showed high homology with that of the Rubisco large subunit. It is concluded that the 66-kD protein is produced by cross-linking of large and small sub-units of Rubisco in the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号