首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 165 毫秒
1.
为研究p38MAPKmRNA在斑马鱼卵母细胞发育中的表达变化,采用实时荧光定量PCR技术,检测p38MAPK的两个亚型p38α和p38β在不同发育阶段卵母细胞及卵母细胞体内成熟过程中的表达。研究显示,p38α和p38βmRNA在初级生长期(PG期)卵母细胞中表达量最低,p38αmRNA在卵黄发生早期(EV期)表达量最高,p38βmRNA在充分生长未成熟期(FG期)卵母细胞中表达量显著高于其他各期(p0.05)。在排卵前卵细胞体内成熟过程中,p38α和p38βmRNA在FG期未成熟卵母细胞中高水平表达,随后p38α和p38β均先下降,但在卵母细胞成熟后显著增加(p0.05)。上述结果提示,斑马鱼卵母细胞发育与p38MAPK的表达变化有关,p38MAPK信号通路在鱼类卵母细胞发育中发挥重要的作用。  相似文献   

2.
为探讨泛素-蛋白水解酶复合体通路(UPP)在小鼠卵母细胞减数分裂和卵裂中的作用, 使用蛋白水解酶复合体特异性抑制剂lactacystin作用于减数分裂不同时期的卵母细胞和受精卵, 结果发现, lactacystin对GVBD的发生无明显影响, 但可明显抑制随后的减数分裂进程, 使极体排放受阻, 引起超排卵母细胞的孤雌激活率下降, 并抑制第一次卵裂. β-tubulin免疫荧光染色显示lactacystin抑制减数分裂微管的组装和纺锤体的形成; 对已进入中期的卵母细胞使用lactacystin, 则对中期纺锤体形态无影响. lactacystin还可使受精卵阻滞于间期或第一次有丝分裂中期. 免疫荧光染色还显示蛋白水解酶复合体催化亚单位PA700在GV期定位在GV及其周围区域, 在中期定位于纺锤体区域. 以上结果表明UPP对小鼠卵母细胞减数分裂和早期卵裂是必需的, 且对减数分裂的作用是多方面的, 在前期与纺锤体的正常形成有关, 而在中期则为染色体的分离和进入后期所必需.  相似文献   

3.
目的 利用在培养液中添加绵羊卵泡液和次黄嘌呤 ,抑制卵母细胞GVBD发生 ,延长转录活性 ,从而使卵母细胞真正成熟 ,提高胚胎质量及生产效率。方法 利用体外成熟技术对有屠宰采集的绵羊卵母细胞进行培养 ,培养液中添加卵泡液及次黄嘌呤 ,检查成熟效果。结果 将卵母细胞培养在 5 0 %和 10 0 %的卵泡液中 ,2 4h后处于GV期的卵母细胞分别为 19% (8 4 2 )和 33 3% (13 39)。在含有 4mmol L次黄嘌呤的培养液中 ,2 4h后有2 1 6 % (16 74 )的卵母细胞处GV期 ,而对照组中只有 6 % (3 5 0 ) ,经过次黄嘌呤处理的卵母细胞多数都停滞于PⅠ期(44 6 % ,33 74 )。在 4mmol L次黄嘌呤培养液中添加FSH并未使受到抑制的卵母细胞诱导成熟。结论 卵泡液和次黄嘌呤只能在有限的程度上抑制减数分裂的重新启动 ,并对减数分裂的全过程都有影响 ,这种影响程度与抑制因子的浓度相关 ,存在明显的剂量效应。  相似文献   

4.
FSH、EGF和胰岛素均对体外培养的小鼠卵母细胞的减数分裂的恢复起促进作用,而FSH的促进作用滞后,但作用后使卵丘细胞扩散。三者的促进作用似受卵巢颗粒细胞内游离钙和cAMP的调节。EGF和胰岛素可使培养的颗粒细胞内的cAMP水平降低;同时FSH使单个卵丘细胞内的游离Ca~(2 )水平降低,而胰岛素无影响。所以FSH、EGF和胰岛素诱发卵母细胞成熟的机制不同:EGF通过细胞内Ca~(2 )的升高和cAMP水平的下降促使卵母细胞的减数分裂恢复;FSH降低卵丘细胞内Ca~(2 )的水平,但由于卵丘细胞与卵母细胞之间的联系被打断,最终使GVBD发生;而胰岛素的作用只涉及胞内cAMP的变化。  相似文献   

5.
蛋白激酶在卵母细胞减数分裂和受精中的作用   总被引:5,自引:0,他引:5  
脊椎动物卵母细胞的减数分裂和受精过程受到多种蛋白激酶的调节。近年来对于卵母细胞成熟、活化和受精的分子机制研究取得了长足进步 ,发现促成熟因子 (MPF)和促分裂原活化蛋白激酶 (MAPK)是调节卵母细胞细胞周期的关键分子 ,二者的激活和失活导致了减数分裂的恢复、阻滞和完成。许多蛋白激酶通过调节MPF和MAPK活性来影响减数分裂。Polo like激酶活化MPF ,Mos激活MAPK而启动成熟分裂并维持中期阻滞。CaMKII通过泛素途径灭活MPF使卵突破MII期阻滞。另外 ,p90 rsk作为MAPK的下游分子参与减数分裂调节 ,蛋白激酶C(PKC)诱导皮质颗粒排放并抑制MAPK激活 ,酪氨酸蛋白激酶家族成员介导受精诱发的Ca2 释放。这些蛋白激酶的协同作用推动了卵母细胞正常的成熟与受精  相似文献   

6.
Zheng YH  Zheng LP  Li F  Wu L  Dai YC 《生理学报》2008,60(1):97-104
本研究探讨了原癌基因c-erbB:和c-myb对小鼠卵母细胞成熟的影响及其在调控卵母细胞成熟中与丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)和成熟促进因子(mamration promoting factor,MPF)的上下游关系.c-erbB2反义寡脱氧核苷酸(antisense oligodeoxynucleotide,ASODN)和c.myb ASODN均呈剂量依赖方式抑制卵母细胞的生发泡破裂(germinalvesicle breakdown,GVBD)率和第一极体(first polar body,PBl)排放率,并显著延迟其成熟时间.小鼠卵母细胞显微注射重组人c-erbB2蛋白和c-myb蛋白后,培养6 h其GVBD率分别比对照组上升了23.1%(P<0.05)和32.2%(P<0.05),.培养12 h其PBl排放率分别比对照组上升了17.3%(P<0.05)和23.5%(P<0.05).RT-PCR结果显示,小鼠卵母细胞中存在c-erbB2mRNA和c-myb mRNA表达;c-erbB2ASODN能明显抑制卵母细胞中c-erbB2mRNA和c-myb mRNA的表达,c-myb ASODN能明显抑制卵母细胞中c-myb mRNA的表达,对c-erbB2 mRNA无明显影响;MAPK抑制剂PD98059以及MPF抑制剂roscovitine在抑制卵母细胞成熟的同时,均能阻断显微注射重组人c-erbB:蛋白和重组人c-myb蛋白对卵母细胞成熟的促进作用,但对卵母细胞中c-erbB2mRNA和c-myb mRNA表达无明显影响.Western blot结果显示,c-erbB2ASODN、c-mybASODN、PD98059、roscovitine均使卵母细胞中MAPK磷酸化水平和cyclinB 1含量下降.结果提示,原癌基因c-erbB2、c-myb在卵母细胞成熟中起重要作用,可能是调控卵母细胞成熟中关键蛋白激酶如MAPK、MPF的上游激活物.  相似文献   

7.
在硬骨鱼类中,发育完全的未成熟的卵母细胞被阻滞在第一次减数分裂前期,这一时期也称为生发泡期。性成熟后,当卵母细胞受到促黄体生成素及其他内分泌、自分泌/旁分泌因子的调节,可突破第一次减数分裂阻滞,发生生发泡破裂,这标志着卵母细胞恢复了第一次减数分裂。这一过程被既复杂又严格精密的机制所调控,对产生可受精的雌配子尤为关键。明确卵母细胞成熟分裂进程中的调控因子及各因子之间直接或间接地相互作用是目前研究的热门领域,但是关于这些机制的研究主要集中于哺乳动物,在硬骨鱼类中的研究相对较少且分散。因此,本研究综述了近年来国内外硬骨鱼类卵母细胞最终成熟过程调控机制及研究进展;以第一次减数分裂的阻滞和第一次减数分裂的恢复两条主线,重点分析总结了17β-雌二醇、环磷酸腺苷、胰岛素样生长因子、丝裂原活化蛋白激酶等调控因子及它们与上游调节因子和下游作用底物构成的信号网络对此过程的调控。本综述为研究硬骨鱼类卵母细胞的最终成熟机制提供理论支持与参考。  相似文献   

8.
本研究旨在探讨小鼠卵母细胞成熟与钙和钙调素的关系。研究发现,20μmol/L W7、50μM BAPTA/AM对GVBD发生没有影响,但阻断了中期Ⅰ的卵母细胞进入中期Ⅱ。通过测定成熟不同阶段细胞内钙的分布,发现GVBD后染色体周围区域有较高水平的钙分布,并且该现象能被加BAPTA/AM而消除。GVBD发生后6h左右高钙分布现象消失。我们还测定了成熟过程中MPF活性的变化,20μmol/L W7、50μmol/L BAPTA/AM对卵母细胞成熟过程中MPF活性的升高没有影响。结果表明:小鼠卵母细胞GVBD的发生不依赖钙和钙调素;钙和钙调素对中期Ⅰ的发育是必需的,并且核周区钙分布可能起着重要作用。  相似文献   

9.
本实验以随机屠宰山羊的卵巢为实验材料,研究了不同直径卵泡卵母细胞的减数分裂进程。结果显示,不同直径卵泡卵母细胞在体外成熟培养条件下的减数分裂能力不同:≤0.5mm直径卵泡的卵母细胞不能恢复减数分裂;0.8-1.2mm卵泡的卵母细胞可恢复减数分裂,但只能发育到MⅠ期,培养24h发育到MⅠ期比率60%;1.5-5.0mm卵泡卵母细胞已经完全获得减数分裂能力,培养24h发育到MⅡ的比例91%。完全获得减数分裂能力的1.5-5.0mm卵泡卵母细胞处于生发泡(GV)期的比率在成熟培养2-8h期间明显下降;其中,4-6h期间GⅤ比率下降最为迅速(由61%降低到19%,p<0.0005);体外培养6-12h期间MⅠ比率由25%上升到60%,随后下降,到24h仅有2%卵母细胞处于MⅠ期;培养16h有21%卵母细胞进入MⅡ期,24h 91%卵母细胞到达MⅡ期。对卵母细胞体外核成熟进程的数据做折线图计算结果表明,1.5-5.0mm卵泡卵母细胞减数分裂进程(各细胞周期事件出现和维持的时间)为:0-3.0h为GⅤ期,3.0-7.0h为前中期Ⅰ,7.0-14.6h为MⅠ期,14.6-18.4h处于后期-Ⅰ和末期-Ⅰ,18.4-24h为MⅡ期。本实验还证明,部分获得减数分裂能力(0.8-1.2mm卵泡)与完全获得减数分裂能力(1.5-5mm卵泡)的卵母细胞,其各细胞周期事件一旦发生,所需的时间是相同的。这些结果为进一步研究山羊卵母细胞减数分裂机制及其调控提供了重要的基础数据。  相似文献   

10.
采用地衣红染色和免疫荧光的方法,观察了培养在基础培养液加BSA、血清、BSA EGF和BSA TGFα四组成熟培养液中绵羊卵母细胞的核成熟状态和α-微管蛋白分布,以及成熟培养后皮质颗粒(CG)的分布情况。结果表明培养22h的上述各组卵母细胞的核成熟率分别为63.5%、75.2%、73.1%、69.8%,处于第一次减数分裂末期的比率分别为27.0%、16.3%、15.9%、16.9%,EGF、TGFα和血清的添加明显提高了核的成熟率(P<0.05),显著减少了处于第一减数分裂末期的比例(P<0.05);α-微管蛋白的正常率(66.6%、66.6%、73.6%)也显著高于BSA组(43.3%)(P<0.05);CG发生迁移较好的卵母细胞比率分别为33.9%、58.8%、54.7%、47.9%,与BSA组相比,EGF和血清的添加明显促进了CG向皮质区的迁移(P<0.05)。实验表明TGFα和EGF均促进了绵羊卵母细胞成熟过程中从第一减数分裂末期向第二减数分裂中期的转变,并且能够替代血清中的某些成分促进和改善体外成熟卵母细胞核成熟的质量,EGF比TGFα更能促进绵羊卵母细胞胞质的成熟。  相似文献   

11.
Previously, it has been shown that oocytes of marine nemertean worms resume meiosis and undergo germinal vesicle breakdown (GVBD) following treatment with either natural seawater (NSW), or the neurohormone serotonin (5-hydroxytryptamine or 5-HT). In this investigation of the nemerteans Cerebratulus lacteus and Cerebratulus sp., immunoblots and kinase assays were used to compare the roles of two regulatory kinases: mitogen-activated protein kinase (MAPK) and Cdc2/cyclin B (referred to as maturation promoting factor or MPF). Based on such analyses, an ERK (extracellular signal regulated kinase) type of MAPK was found to be activated concurrently with Cdc2/cyclin B during NSW- and 5-HT-induced maturation. MAPK activation occurred prior to GVBD and seemed to be controlled primarily by phosphorylation rather than de novo protein synthesis. Inhibition of MAPK signaling by U0126 was capable of delaying but not permanently blocking Cdc2/cyclin B activation and GVBD in 5-HT treated oocytes and subsets of NSW-treated oocytes. Collectively such data indicated that GVBD is not fully dependent on MAPK activation, since Cdc2/cyclin B can apparently be activated by MAPK-independent mechanism(s) in maturing nemertean oocytes.  相似文献   

12.
The present study investigated the phosphorylation pattern of mitogen-activated protein kinase (MAPK) in cumulus-oocyte complexes (COCs) during spontaneous and FSH/LH-induced in vitro maturation (IVM). Both isoforms of MAPK were unphosphorylated in oocytes recovered immediately after liberation from follicles and became phosphorylated following 25 h incubation, corresponding to the time of germinal vesicle breakdown (GVBD). In contrast, MAPK was already phosphorylated in minimal amounts in cumulus cells at the time of liberation from follicles and phosphorylation of MAPK increased after 0.5 h incubation. Supplementation of medium with gonadotrophins intensified phosphorylation at 0.5 h incubation, demonstrating the early and rapid action of FSH/LH on MAPK phosphorylation. Phosphorylation of MAPK in cumulus cells peaked after 21 h of incubation, whereas MAPK was almost completely dephosphorylated at the end of incubation (45 h). During subsequent incubation in the absence of added gonadotrophins, between 5 and 10 h exposure to FSH/LH-supplemented medium was required to induce resumption of meiosis in COCs. Phosphorylation of MAPK in oocytes was prevented by the MEK inhibitor U0126, but the inhibitor reduced phosphorylation of MAPK in cumulus cells only during the first 2 h of IVM. The data support the hypothesis that two different MAPK phosphorylation events occurred following gonadotrophin stimulation, one in cumulus cells and the other in oocytes. In cumulus cells, FSH/LH induced early and rapid U0126-insensitive phosphorylation of MAPK, whereas U0126-susceptible MAPK phosphorylation took place in the oocyte itself around the time of GVBD.  相似文献   

13.
Mitogen-activated protein kinase (MAPK) plays a crucial role in meiotic maturation of mouse oocytes. In order to understand the mechanism by which MAPK regulates meiotic maturation, we examined the effects of the MAPK pathway inhibitor U0126 on microtubule organization, gamma-tubulin and nuclear mitotic apparatus protein (NuMA) distribution, and actin filament assembly in mouse oocytes maturing in vitro. Western blotting with antibodies that detect active, phosphorylated MAPK revealed that MAPK was inactive in fully grown germinal vesicle (GV) oocytes. Phosphorylated MAPK was first detected 3 hr after the initiation of maturation cultures, was fully active at 6 hr, and remained active until metaphase II. Treatment of GV stage oocytes with 20 microM U0126 completely blocked MAPK phosphorylation, but did not affect GV breakdown (GVBD). However, the oocytes did not progress to the Metaphase I stage, which would normally occur after 9 hr in the maturation cultures. The inhibition of MAPK resulted in abnormal spindles and abnormal distributions of gamma-tubulin and NuMA, but did not affect actin filament assembly. In oocytes treated with U0126 after GVBD, polar body extrusion was normal, but the organization of the metaphase plate and chromosome segregation were abnormal. In conclusion, the meiotic abnormalities caused by U0126, a specific inhibitor of MAPK signaling, indicate that MAPK plays an important regulatory role in microtubule and centrosome assembly, but not actin filament assembly.  相似文献   

14.
Oocytes of Crassostrea gigas and Mytilus galloprovincialis are arrested in metaphase I when they are spawned and ready to be fertilized. To investigate the role of MAP kinase in maintaining metaphase I arrest, oocytes were exposed to the MEK inhibitor U0126, and the effects on chromosome behavior and MAPK activity were examined by bisbenzimide staining and in immunoblots with anti-phospho MAPK antibodies. Following treatment with 50 microM U0126, active MAPK was undetectable and oocytes resumed meiosis, forming enlarged polar bodies and undergoing chromosome decondensation. Prophase stage oyster oocytes maturing spontaneously in seawater completed germinal vesicle breakdown in the presence of U0126, but failed to arrest in metaphase I, and also formed polar bodies and underwent chromosome decondensation. Treatment of oyster oocytes with the protein synthesis inhibitor, emetine (500 microM), also caused them to resume meiosis, although substantial MAPK activity remained. Levels of phospho-MEK also decreased during emetine treatment. 35 S-methionine incorporation in emetine treated oocytes was reduced to only 5% of control values. These data show that, while active MAPK is necessary to maintain metaphase I arrest, other proteins are also required.  相似文献   

15.
The protein kinase p90(Rsk) has previously been implicated as a key target of the MAPK pathway during M phase of meiosis II in Xenopus oocytes. To determine whether Rsk is a mediator of MAPK for stimulation of the G(2)/M transition early in meiosis I, we sought to generate a form of Rsk that would be constitutively active in resting, G(2) phase oocytes. Initial studies revealed that an N-terminal truncation of 43 amino acids conferred enhanced specific activity on the enzyme in G(2) phase, and stability was highest if the C terminus was not truncated. The full-length enzyme is known to be activated by phosphorylation at five sites. Two of these sites and flanking residues were replaced with either aspartic or glutamic acid, and Tyr(699) was mutated to alanine. The resulting construct, termed fully activated (FA) Rsk, had constitutive activity in G(2) phase, with a specific activity equivalent to that of wild type Rsk in M phase. In eight independent experiments approximately 45% of oocytes expressing FA-Rsk underwent germinal vesicle breakdown (GVBD, the G(2)/M transition) in the absence of progesterone, and this effect could be observed even in the presence of the MAPK kinase inhibitor U0126. Moreover, the specific activity of FA-Rsk in vivo was unaffected by U0126. In oocytes that did not undergo GVBD with FA-Rsk expression, subsequent treatment with progesterone resulted in a very rapid rate of GVBD even in the presence of U0126 to inhibit the endogenous MAPK/Rsk pathway. These results indicate that Rsk is the mediator of MAPK effects for the G(2)/M transition in meiosis I and in a subpopulation of oocytes Rsk is sufficient to trigger the G(2)/M transition.  相似文献   

16.
Mitogen-activated protein kinase (MAPK) becomes activated during the meiotic maturation of pig oocytes, but its physiological substrate is unknown. The 90-kDa ribosome S6 protein kinase (p90rsk) is the best known MAPK substrate in Xenopus and mouse oocytes. The present study was designed to investigate the expression, phosphorylation, subcellular localization, and possible roles of p90rsk in porcine oocytes during meiotic maturation, fertilization, and parthenogenetic activation. This kinase was partially phosphorylated in oocytes at germinal vesicle (GV) stage through a MAPK-independent mechanism, but its full phosphorylation is dependent on MAPK activity. After fertilization or electrical activation, p90rsk was dephosphorylated shortly before pronucleus formation, which coincided with the inactivation of MAPK. A protein phosphatase inhibitor, okadaic acid, accelerated the phosphorylation of p90rsk during meiotic maturation and induced its rephosphorylation in activated eggs. MAPK kinase (MAPKK or MEK) inhibitor U0126 inhibited the activation of MAPK and p90rsk in both cumulus-enclosed and denuded pig oocytes, but prevented GV breakdown (GVBD) only in cumulus-enclosed oocytes. Active MAPK and p90rsk were detected in pig cumulus cells, and U0126 induced their dephosphorylation. In meiosis II arrested eggs, U0126 led to the inactivation of MAPK and p90rsk, as well as the interphase transition of the eggs. P90rsk was distributed evenly in GV oocytes, but it accumulated in the nucleus before GVBD. It was localized to the meiotic spindle after GVBD and concentrated in the spindle mid zone during emission of the polar bodies. All these results suggest that p90rsk is downstream of MAPK and plays functional roles in the regulation of nuclear status and microtubule organization. Although MAPK and p90rsk activity are not essential for the spontaneous meiotic resumption in denuded oocytes, activation of this cascade in cumulus cells is indispensable for the gonadotropin-induced meiotic resumption of pig oocytes.  相似文献   

17.
The function of mitogen-activated protein kinase (MAPK) during porcine oocyte maturation was examined by injecting oocytes with either mRNA or antisense RNA of porcine c-mos protein, an upstream kinase of MAPK. The RNAs were injected into the cytoplasm of porcine immature oocytes immediately after collection from ovaries, then the oocytes were cultured for maturation up to 48 h. The phosphorylation and activation of MAPK were observed at 6 h after injection of the c-mos mRNA injected-oocytes, whereas in control oocytes, MAPK activation was detected at 24 h of culture. The germinal vesicle breakdown (GVBD) rate at 24 h of culture was significantly higher in c-mos mRNA-injected oocytes than in control oocytes. In contrast, although injection of c-mos antisense RNA completely inhibited phosphorylation and activation of MAPK throughout the maturation period, the GVBD rate and its time course were the same in noninjected oocytes. The degree of maturation-promoting factor (MPF) activation was, however, very low in oocytes in the absence of MAPK activation. Most of those oocytes had both abnormal morphology and decondensed chromosomes at 48 h of culture. These results suggest that MAPK activation is not required for GVBD induction in porcine oocytes and that the major roles of MAPK during porcine oocyte maturation are to promote GVBD by increasing MPF activity and to arrest oocytes at the second metaphase.  相似文献   

18.
19.
Mammalian eggs are arrested in metaphase II of meiosis until fertilization. Arrest is maintained by cytostatic factor (CSF) activity, which is dependent on the MOS-MEK-MAPK pathway. Inhibition of MEK1/2 with a specific inhibitor, U0126, parthenogenetically activated mouse eggs, producing phenotypes similar to Mos(-/-) parthenogenotes (premature, unequal cleavages and large polar bodies). U0126 inactivated MAPK in eggs within 1 h, in contrast to the 5 h required after fertilization, while the time course of MPF inactivation was similar in U0126-activated and fertilized eggs. We also found that inactivation of MPF by the cdc2 kinase inhibitor roscovitine induced parthenogenetic activation. Inactivation of MPF by roscovitine resulted in the subsequent inactivation of MAPK with a time course similar to that following fertilization. Notably, roscovitine also produced some Mos(-/-)-like phenotypes, indistinguishable from U0126 parthenogenotes. Simultaneous inhibition of both MPF and MAPK in eggs treated with roscovitine and U0126 produced a very high proportion of eggs with the more severe phenotype. These findings confirm that MEK is a required component of CSF in mammalian eggs and imply that the sequential inactivation of MPF followed by MAPK inactivation is required for normal spindle function and polar body emission.  相似文献   

20.
The membrane-permeable intracellular heavy metal chelator, 1,10-phenanthroline, which prevents progesterone-induced germinal vesicle breakdown (GVBD), would be expected to regulate phosphorylation (activation) of the MAP kinase (MAPK) cascade in Xenopus oocytes. Here, our experiments show that 1,10-phenanthroline itself results in the phosphorylation of MAPK in both oocytes and a cell-free system. In contrast, 1,7-phenanthroline, the nonchelating analogue, had no effect. A supplement of zinc (as a heavy metal) given to 1,10-phenanthroline-loaded oocytes suppressed the stimulatory effects of 1,10-phenanthroline, while 1,10-phenanthroline withdrawal caused dephosphorylation of activated MAPK. Further, treatment with a MEK (a MAPK kinase) inhibitor, PD 098059 or U0126, suppressed 1,10-phenanthroline-stimulated MAPK phosphorylation, indicating that 1,10-phenanthroline can phosphorylate MAPK in a MEK-dependent fashion. Our results suggest that phosphorylation of MAPK by 1,10-phenanthroline depends on the interaction of MEK. Thus, the intracellular heavy metal (zinc) regulates MAPK phosphorylation and 1,10-phenanthroline can serve as a unique tool for investigating MAPK phosphorylation mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号