首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 51 毫秒
1.
Calcium signal is important for the regulation of meiotic cell cycle in oocytes, but its downstream mechanism is not well known. The functional roles of calcium/calmodulin-dependent protein kinase II (CaMKII) in meiotic maturation and activation of pig oocytes were studied by drug treatment, Western blot analysis, kinase activity assay, indirect immunostaining, and confocal microscopy. The results indicated that meiotic resumption of both cumulus-enclosed and denuded oocytes was prevented by CaMKII inhibitor KN-93, Ant-AIP-II, or CaM antagonist W7 in a dose-dependent manner, but only germinal vesicle breakdown (GVBD) of denuded oocytes was inhibited by membrane permeable Ca2+ chelator BAPTA-AM. When the oocytes were treated with KN-93, W7, or BAPTA-AM after GVBD, the first polar body emission was inhibited. A quick elevation of CaMKII activity was detected after electrical activation of mature pig oocytes, which could be prevented by the pretreatment of CaMKII inhibitors. Treatment of oocytes with KN-93 or W7 resulted in the inhibition of pronuclear formation. The possible regulation of CaMKII on maturation promoting factor (MPF), mitogen-activated protein kinase (MAPK), and ribosome S6 protein kinase (p90rsk) during meiotic cell cycles of pig oocytes was also studied. KN-93 and W7 prevented the accumulation of cyclin B and the full phosphorylation of MAPK and p90rsk during meiotic maturation. When CaMKII activity was inhibited during parthenogenetic activation, cyclin B, the regulatory subunit of MPF, failed to be degraded, but MAPK and p90rsk were quickly dephosphorylated and degraded. Confocal microscopy revealed that CaM and CaMKII were localized to the nucleus and the periphery of the GV stage oocytes. Both proteins were concentrated to the condensed chromosomes after GVBD. In oocytes at the meiotic metaphase MI or MII stage, CaM distributed on the whole spindle, but CaMKII was localized only on the spindle poles. After transition into anaphase, both proteins were translocated to the area between separating chromosomes. All these results suggest that CaMKII is a multifunctional regulator of meiotic cell cycle and spindle assembly and that it may exert its effect via regulation of MPF and MAPK/p90rsk activity during the meiotic maturation and activation of pig oocytes.  相似文献   

2.
Protein kinase C (PKC) and mitogen-activated protein kinase (MAPK) in cumulus cells are involved in FSH-induced meiotic resumption of cumulus-enclosed oocytes (CEOs), but their regulation and cross talk are unknown. The present experiments were designed to investigate 1) the possible involvement of MAPK cascade in PKC-induced meiotic resumption; 2) the regulation of PKC on MAPK activity in FSH-induced oocyte maturation; and 3) the pattern of PKC and MAPK function in induced meiotic resumption of mouse oocytes. PKC activators, phorbol 12-myristate 13-acetate (PMA) and 1-oleoyl-2-acetyl-sn-glycerol (OAG), induced the meiotic resumption of CEOs and activation of MAPK in cumulus cells, whereas this effect could be abolished by PKC inhibitors, calphostin C and chelerythrine, or MEK inhibitor U0126. These results suggest that PKC might induce the meiotic reinitiation of CEOs by activating MAPK in cumulus cells. Both PKC inhibitors and U0126 inhibited the FSH-induced germinal vesicle breakdown (GVBD) of oocytes and MAPK activation in cumulus cells, suggesting that PKC and MAPK are involved in FSH-induced GVBD of mouse CEOs. Protein synthesis inhibitor cycloheximide (CHX) inhibited FSH- or PMA-induced oocyte meiotic resumption, but not the MAPK activation in cumulus cells. FSH and PKC activators induced the GVBD in denuded oocytes cocultured with cumulus cells in hypoxanthine (HX)-supplemented medium, and this effect could be reversed by U0126. Thus, when activated by FSH and PKC, MAPK may stimulate the synthesis of specific proteins in cumulus cells followed by secretion of an unknown positive factor that is capable of inducing GVBD in oocytes.  相似文献   

3.
The 5'AMP-activated protein kinase (AMPK) activation is involved in the meiotic maturation of oocytes in the ovaries of mice and pigs. However, its effects on the oocyte appear to be species-specific. We investigated the patterns of AMPK and mitogen-activated protein kinases (MAPK3/1) phosphorylation during bovine in vitro maturation (IVM) and the effects of metformin, an AMPK activator, on oocyte maturation in cumulus-oocyte complexes (COCs) and denuded bovine oocytes (DOs). In bovine COCs, PRKAA Thr172 phosphorylation decreased, whereas MAPK3/1 phosphorylation increased in both oocytes and cumulus cells during IVM. Metformin (5 and 10 mM) arrested oocytes at the GV stage in COCs but not in DOs. In COCs, this arrest was associated with the inhibition of cumulus cell expansion, an increase in PRKAA Thr172 phosphorylation, and a decrease in MAPK3/1 phosphorylation in both oocytes and cumulus cells. However, the addition of compound C (10 muM), an inhibitor of AMPK, accelerated the initiation of the GV breakdown (GVBD) process without any alteration of MAPK3/1 phosphorylation in oocytes from bovine COCs. Metformin decreased AURKA and CCNB1 protein levels in oocytes. Moreover, after 1 h of IVM, metformin decreased RPS6 phosphorylation and increased EEF2 phosphorylation, suggesting that protein synthesis rates were lower in oocytes from metformin-treated COCs. Most oocytes were arrested after the GVBD stage following the treatment of COCs with the MEK inhibitor, U0126 (100 micromoles). Thus, in bovine COCs, metformin blocks meiotic progression at the GV stage, activates PRKAA, and inhibits MAPK3/1 phosphorylation in both the oocytes and cumulus cells during IVM. Moreover, cumulus cells were essential for the effects of metformin on bovine oocyte maturation, whereas MAPK3/1 phosphorylation was not.  相似文献   

4.
Degradation of proteins mediated by the ubiquitin-proteasome pathway (UPP) plays essential roles in the eukaryotic cell cycle. The main aim of the present study was to analyze the functional roles and regulatory mechanisms of the UPP in pig oocyte meiotic maturation, activation, and early embryo mitosis by drug treatment, Western blot analysis, and confocal microscopy. By using the hypoxanthine-maintained meiotic arrest model, we showed that the meiotic resumption of both cumulus-enclosed oocytes and denuded oocytes was stimulated in a dose- and time-dependent manner by two potent and cell-permeable proteasome inhibitors. Both the mitogen-activated protein kinase (MAPK) kinase inhibitor U0126 and the maturation-promoting factor inhibitor roscovitine overcame the stimulation of germinal vesicle breakdown induced by proteasome inhibitors. The phosphorylation of MAPK and p90rsk and the expression of cyclin B1 increased in a dose- and time-dependent manner when treated with proteasome inhibitors during oocyte in vitro-maturation culture. Both U0126 and roscovitine inhibited the phosphorylation of MAPK and p90rsk, and the synthesis of cyclin B1 stimulated by proteasome inhibitors. When matured oocytes were pretreated with proteasome inhibitors and then fertilized or artificially activated, the second polar body emission and the pronuclear formation were inhibited, and the dephosphorylation of MAPK and p90rsk as well as the degradation of cyclin B1 that should occur after oocyte activation were also inhibited. We also investigated, to our knowledge for the first time, the subcellular localization of 20S proteasome alpha subunits at different stages of oocyte and early embryo development. The 20S proteasome alpha subunits were accumulated in the germinal vesicle, around the condensed chromosomes at prometaphase, with spindle at metaphase I and II, the region between the separating chromosomes, and especially the midbody at anaphase I and telophase I, the pronucleus, and the nucleus in early embryonic cells. In conclusion, our results suggest that the UPP is important at multiple steps of pig oocyte meiosis, fertilization, and early embryonic mitosis and that it may play its roles by regulating cyclin B1 degradation and MAPK/p90rsk phosphorylation.  相似文献   

5.
Activation of p38 MAPK during porcine oocyte maturation   总被引:1,自引:0,他引:1  
  相似文献   

6.
Degradation of proteins mediated by ubiquitin-proteasome pathway (UPP) plays important roles in the regulation of eukaryotic cell cycle. In this study, the functional roles and regulatory mechanisms of UPP in mouse oocyte meiotic maturation, fertilization, and early embryonic cleavage were studied by drug-treatment, Western blot, antibody microinjection, and confocal microscopy. The meiotic resumption of both cumulus-enclosed oocytes and denuded oocytes was stimulated by two potent, reversible, and cell-permeable proteasome inhibitors, ALLN and MG-132. The metaphase I spindle assembly was prevented, and the distribution of ubiquitin, cyclin B1, and polo-like kinase 1 (Plk1) was also distorted. When UPP was inhibited, mitogen-activated protein kinase (MAPK)/p90rsk phosphorylation was not affected, but the cyclin B1 degradation that occurs during normal metaphase-anaphase transition was not observed. During oocyte activation, the emission of second polar body (PB2) and the pronuclear formation were inhibited by ALLN or MG-132. In oocytes microinjected with ubiquitin antibodies, PB2 emission and pronuclear formation were also inhibited after in vitro fertilization. The expression of cyclin B1 and the phosphorylation of MAPK/p90rsk could still be detected in ALLN or MG-132-treated oocytes even at 8 h after parthenogenetic activation or insemination, which may account for the inhibition of PB2 emission and pronuclear formation. We also for the first time investigated the subcellular localization of ubiquitin protein at different stages of oocyte and early embryo development. Ubiquitin protein was accumulated in the germinal vesicle (GV), the region between the separating homologous chromosomes, the midbody, the pronuclei, and the region between the separating sister chromatids. In conclusion, our results suggest that the UPP plays important roles in oocyte meiosis resumption, spindle assembly, polar body emission, and pronuclear formation, probably by regulating cyclin B1 degradation and MAPK/p90rsk phosphorylation.  相似文献   

7.
Numerous studies have demonstrated that activation of the mitogen-activated protein (MAP) kinase is involved in the maturation of oocytes. In this study, the expression and phosphorylation of MAP kinase and p90rsk, one of the substrates of MAP kinase, during rabbit oocyte maturation were studied. The results showed that MAP kinase phosphorylation began to occur after germinal vesicle breakdown (GVBD) and the active form was maintained until metaphase II. p90rsk was also activated after GVBD following MAP kinase activation. Immunofluorescent analysis showed that p90rsk was enriched in the nuclear area after GVBD and was gradually localised to the spindle. When GVBD was inhibited by increased cAMP or decreased protein kinase C activity, the phosphorylation of both MAP kinase and p9rsk was blocked. Our data suggest that (1) MAP kinase/p90rsk activation is not necessary for GVBD, but plays an important role in the post-GVBD events including spindle assembly in rabbit oocytes; and (2) MAP kinase/p9rsk activation is down-regulated by cAMP and up-regulated byprotein kinase C in cumulus-enclosed rabbit oocytes.  相似文献   

8.
The overall objective was to elucidate the phosphorylation pattern and activity of the kinase p90rsk, a substrate of mitogen-activated protein kinase (MAPK), during in vitro and in vivo maturation of pig oocytes. Cumulus-oocyte complexes were collected from slaughtered pigs and matured in vitro (0, 22, 26, 30, 34, 46 h) with and without the MEK inhibitor U0126. For in vivo maturation, gilts were stimulated with equine chorionic gonadotrophin (eCG) (600-800 IU). Maturation was induced 72 h later with hCG (500 IU). Oocytes were obtained surgically (0, 22, 30 h). The samples were submitted to electrophoresis and protein blotting analysis. Enhanced chemiluminescence was used for visualization. In vitro matured oocytes were further submitted to a commercially available radioactive kinase assay to determine kinase activity. It was shown that oocytes, as well as cumulus cells, already possess a partially phosphorylated p90rsk at the time of removal from follicles, with a further phosphorylation of the molecule occurring between 22-24 h after the initiation of culture, and in vivo maturation. The phosphorylation of p90rsk coincides with the phosphorylation of MAPK and can be prevented by U0126, indicating a MAPK-dependent phosphorylation of p90rsk. Phosphorylation of the in vivo matured oocytes occurred shown as a band of less than 200 kDa. This is presumably a molecule complex, with MAPK not being a component. Therefore, the p90rsk molecule in vivo exists as a dimer. Determination of kinase activity demonstrated decreasing enzyme activities. This led to the conclusion that the assay is not specific for p90rsk, instead measuring p70S6 kinase activities.  相似文献   

9.
Gonadotropic stimulation of meiotic resumption in mice is dependent upon mitogen-activated protein kinase (MAPK) activation in the somatic compartment of the follicle. By contrast, spontaneous resumption of meiosis is independent of MAPK activation. In view of the suggested role of meiosis-activating sterol (MAS) in oocyte maturation we have (i) compared MAPK activation in rat preovulatory follicles stimulated by LH or by accumulation of endogenous MAS by using an inhibitor of MAS conversion, AY9944; (ii) examined whether stimulation of meiosis by MAS is dependent upon MAPK activation using denuded oocytes (DO) of Mos- null mice (hereafter Mos(-/-)) with oocytes unable to activate MAPK. Rat preovulatory follicles responded to LH or AY9944 stimulation by MAPK activation. Inhibition of MAPK phosphorylation blocked both LH- and AY9944 triggered resumption of meiosis. In mouse cumulus-enclosed oocytes (CEOs) and DOs AY9944 stimulated GVB in wild-type and Mos(-/-) mouse CEOs cultured with hypoxanthine (Hx). Addition of MAS or AY9944 to mouse DOs cultured with Hx induced resumption of meiosis only in wild-type and Mos(+/-) oocytes, but they were ineffective in Mos(-/-) oocytes. The observed sluggish activation of MAPK induced by AY9944 in rat follicle-enclosed oocytes (FEO) may cause the delay in meiotic resumption in response to MAS and AY9944 stimulation. Further, it is incompatible with the suggested role of MAS as an obligatory mediator of LH in the induction of meiotic maturation. MAPK/MOS activation, whether in the somatic compartment or in denuded oocytes, is required for MAS- like LH-, FSH-, or EGF-induced resumption of meiosis.  相似文献   

10.
To determine if newly synthesized protein is imperative for the resumption of meiosis in bovine follicular oocytes collected from small antral follicles, cumulus-enclosed and denuded oocytes were cultured in TCM-199 both with and without various concentrations of the protein synthesis inhibitor, cycloheximide. After 11 h of culture in inhibitor-free medium, all oocytes had undergone germinal vesicle breakdown (GVBD). However, when concentrations of more than 1.0 mug/ml cycloheximide were added to the medium, the meiotic resumption of bovine oocytes was completely blocked. This inhibitory effect of cycloheximide was fully reversible after removal of the inhibitor from maturation media. Germinal vesicle breakdown following removal of cycloheximide occurred twice as fast as in the control medium. Nevertheless, when oocytes were arrested at the germinal vesicle (GV) stage by cycloheximide, a significantly higher proportion of chromatin condensation (40 to 57%) was observed in denuded oocytes than in cumulus-enclosed oocytes (11 to 22%). Thus the cycloheximide treatment could not prevent the chromatin condensation in only denuded oocytes. We conclude that protein synthesis is a prerequisite for GVBD in bovine follicular oocytes and that cumulus cells are responsible for the complementary regulation of the chromatin condensation at the GV stage, regardless of protein synthesis in the oocytes.  相似文献   

11.
The sterol 4,4-dimethyl-5-cholesta-8,14,24-trien-3-ol (follicular fluid meiosis-activating sterol [FF-MAS]) isolated from human follicular fluid induces resumption of meiosis in mouse oocytes cultured in vitro. The purpose of this study was to examine the hypothesis that differential signal transduction mechanisms exist for FF-MAS-induced and spontaneous in vitro resumption of meiosis in mouse oocytes. Mouse oocytes were dissected from ovaries originating from mice primed with FSH 48 h before oocyte collection. Mechanically denuded germinal vesicle (GV) oocytes were in vitro matured in medium supplemented with hypoxanthine and FF-MAS or allowed to mature spontaneously; both groups were exposed to individual compounds known to inhibit specific targets in the cell. After 20-22 h of in vitro maturation, resumption of meiosis was assessed as the frequency of oocytes in GV breakdown (GVBD) stage. Pertussis toxin (2.5 microg/ml) did not influence resumption of meiosis in either group. Dibutyryl cyclic GMP (320 microM) inhibited FF-MAS-induced GVBD, but not spontaneous GVBD, whereas the subtype 5 phosphodiesterase-inhibitor zaprinast (50 microM) inhibited GVBD in both groups. Microinjection of the catalytic subunit of cAMP-dependent protein kinase into oocytes inhibited spontaneous GVBD, but not FF-MAS-induced GVBD. An inhibitor of cytoplasmic polyadenylation, cordycepin (80 microM), inhibited or retarded spontaneous GVBD to a further extent than it did FF-MAS-induced GVBD. Spontaneous GVBD was more sensitive to the histone H1 kinase-inhibitor olomoucine (250 microM) than was FF-MAS-induced GVBD. Addition of the mitogen-activated protein kinase (MAPK)-inhibitor PD 98059 (50 microM), phospholipase C-inhibitor U-73122 (10 microM), p21(ras)-inhibitor lovastatine (250 microM), and the src-like kinase inhibitor PP2 (20 microg/ml) inhibited FF-MAS-induced GVBD, but not spontaneous GVBD. Both MAPKs, extracellular regulated kinase (ERK) 1 and ERK2, were phosphorylated under FF-MAS-induced meiotic resumption, in contrast to spontaneous meiotic resumption, in which ERK1 and ERK2 phosphorylation occurred 2 h after GVBD. In the present study, we show that FF-MAS acts through an MAPK-dependent pathway, and we suggest that src-like kinase, p21(ras), and phosphoinositide signaling lie upstream of MAPK in the FF-MAS-activated signaling pathway. Clearly, striking pathway differences are present between spontaneous versus FF-MAS-induced meiotic resumption.  相似文献   

12.
Tong C  Fan HY  Chen DY  Song XF  Schatten H  Sun QY 《Cell research》2003,13(5):375-383
In this study we used U0126, a potent and specific inhibitor of MEK, to study the roles of MEK/ERK/p90rsk signaling pathway in the meiotic cell cycle of mouse oocytes. The phosphorylation of MAP kinase and p90rsk in the oocytes treated with 1.5 microM U0126 was the same as that in oocytes cultured in drug-free medium. With 1.5 microM U0126 treatment, the spindles appeared normal as they formed in oocytes, but failed to maintain its structure. Instead, the spindle lost one pole or elongated extraordinarily. After further culture, some oocytes extruded gigantic polar bodies (>30 microm) that later divided into two small ones. Some oocytes underwent symmetric division and produced two equal-size daughter cells in which normal spindles formed. In oocytes with different division patterns, MAP kinase was normally phosphorylated. When the concentration of U0126 was increased to 15 mM, the phosphorylation of both MAPK and p90rsk were inhibited, while symmetric division was decreased. When incubating in medium containing 15 microM U0126 for 14 h, oocytes were activated, but part of them failed to emit polar bodies. MII oocytes were also activated by 15 microM U0126, at the same time the dephosphorylation of MAP kinase and p90rsk was observed. Our results indicate that 1) MEK plays important but not indispensable roles in microtubule organization; 2) MEK keeps normal meiotic spindle morphology, targets peripheral spindle positioning and regulates asymmetric division by activating some unknown substrates other than MAP kinase /p90rsk; and 3) activation of MEK/ERK/p90rsk cascade maintains MII arrest in mouse oocytes.  相似文献   

13.
Mitogen-activated protein kinase (MAPK) plays a crucial role in meiotic maturation of mouse oocytes. In order to understand the mechanism by which MAPK regulates meiotic maturation, we examined the effects of the MAPK pathway inhibitor U0126 on microtubule organization, gamma-tubulin and nuclear mitotic apparatus protein (NuMA) distribution, and actin filament assembly in mouse oocytes maturing in vitro. Western blotting with antibodies that detect active, phosphorylated MAPK revealed that MAPK was inactive in fully grown germinal vesicle (GV) oocytes. Phosphorylated MAPK was first detected 3 hr after the initiation of maturation cultures, was fully active at 6 hr, and remained active until metaphase II. Treatment of GV stage oocytes with 20 microM U0126 completely blocked MAPK phosphorylation, but did not affect GV breakdown (GVBD). However, the oocytes did not progress to the Metaphase I stage, which would normally occur after 9 hr in the maturation cultures. The inhibition of MAPK resulted in abnormal spindles and abnormal distributions of gamma-tubulin and NuMA, but did not affect actin filament assembly. In oocytes treated with U0126 after GVBD, polar body extrusion was normal, but the organization of the metaphase plate and chromosome segregation were abnormal. In conclusion, the meiotic abnormalities caused by U0126, a specific inhibitor of MAPK signaling, indicate that MAPK plays an important regulatory role in microtubule and centrosome assembly, but not actin filament assembly.  相似文献   

14.
The present study investigated the phosphorylation pattern of mitogen-activated protein kinase (MAPK) in cumulus-oocyte complexes (COCs) during spontaneous and FSH/LH-induced in vitro maturation (IVM). Both isoforms of MAPK were unphosphorylated in oocytes recovered immediately after liberation from follicles and became phosphorylated following 25 h incubation, corresponding to the time of germinal vesicle breakdown (GVBD). In contrast, MAPK was already phosphorylated in minimal amounts in cumulus cells at the time of liberation from follicles and phosphorylation of MAPK increased after 0.5 h incubation. Supplementation of medium with gonadotrophins intensified phosphorylation at 0.5 h incubation, demonstrating the early and rapid action of FSH/LH on MAPK phosphorylation. Phosphorylation of MAPK in cumulus cells peaked after 21 h of incubation, whereas MAPK was almost completely dephosphorylated at the end of incubation (45 h). During subsequent incubation in the absence of added gonadotrophins, between 5 and 10 h exposure to FSH/LH-supplemented medium was required to induce resumption of meiosis in COCs. Phosphorylation of MAPK in oocytes was prevented by the MEK inhibitor U0126, but the inhibitor reduced phosphorylation of MAPK in cumulus cells only during the first 2 h of IVM. The data support the hypothesis that two different MAPK phosphorylation events occurred following gonadotrophin stimulation, one in cumulus cells and the other in oocytes. In cumulus cells, FSH/LH induced early and rapid U0126-insensitive phosphorylation of MAPK, whereas U0126-susceptible MAPK phosphorylation took place in the oocyte itself around the time of GVBD.  相似文献   

15.
Mitogen-activated protein (MAP) kinase has been reported to be activated during oocyte meiotic maturation in a variety of mammalian species. However, the mechanism(s) responsible for MAP kinase activation and the consequence of its premature activation during gonadotropin-induced oocyte meiotic resumption have not been examined. The present experiments were conducted to investigate the possible role of MAP kinase in FSH-induced and spontaneous oocyte meiotic resumption in the mouse. MAP kinase kinase (MAPKK, MEK) inhibitor, PD98059 or U0126, produced a dose-dependent inhibitory effect on both FSH-induced oocyte meiotic resumption and MAP kinase activation in the oocytes. However, the same inhibitor did not block spontaneous meiotic resumption of either denuded or cumulus cell-enclosed mouse oocytes, despite the activity of MAP kinase being totally inhibited. Immunoblotting the oocytes and the cumulus cells with the anti-active MAP kinase antibody showed that MAP kinase activity in the oocytes was detected at 8 h of FSH treatment, prior to germinal vesicle breakdown and increased as maturation progressed in the following culture period. In the cumulus cells, MAP kinase was activated even faster, its activity was detected at 1 h of FSH stimulation and increased gradually until 8 h of FSH treatment, then decreased and diminished after 12 h of FSH action. These data demonstrated that the MEK-MAP kinase pathway is implicated in FSH-induced but not spontaneous oocyte meiotic resumption.  相似文献   

16.
Tatemoto H  Terada T 《Theriogenology》1995,43(6):1107-1113
To identify the stage during maturation at which new protein and RNA are synthesized for meiotic resumption, follicular oocytes were cultured in TCM-199 with the protein synthesis inhibitor cycloheximide or the hnRNA synthesis inhibitor alpha-amanitin. Although the meiotic resumption of cumulus-enclosed oocytes was completely blocked by the addition of 25 microg/ml cycloheximide at 4 h after the onset of culture, 23% of oocytes cultured from 5 h post cultivation in the medium with cycloheximide underwent germinal vesicle breakdown (GVBD). By further delaying the addition of cycloheximide, the proportion of oocytes which underwent GVBD increased. Addition of the inhibitor at 8 h or more post cultivation resulted in GVBD occurring in more than 87% of oocytes, though none of them were able to proceed beyond the metaphase I stage. In contrast, the addition of 50 microg/ml alpha-amanitin from the onset of culture significantly reduced the proportion of GVBD to 75% in cumulus-enclosed oocytes, while no significant reduction in the proportions of GVBD was noted in the case of its addition from 1 h of culture onward. However, denuded oocytes were almost insensitive to any treatments with alpha-amanitin. These results indicate that protein synthesis in the oocytes and RNA synthesis in the cumulus cells soon after the onset of culture are necessary for GVBD and that continuous protein synthesis following GVBD is indispensable for progression of the meiotic division in bovine oocytes.  相似文献   

17.
Forskolin induced biphasic responses of cumulus progesterone secretion (determined by RIA) and cumulus mass expansion, with maximal increases occurring at 6.25 microns, and subsequent dose-dependent declines observed up to 10 microns-forskolin. The diterpene induced dose-dependent responses in the % germinal vesicle (GV) of cumulus-enclosed and denuded oocytes (0.23 and 4.84 microns maintained 50% GV, respectively), it increased the cAMP content of cumulus masses, cumulus-enclosed oocytes and denuded oocytes, and increased heterologous metabolic coupling (determined by measuring transfer of radiolabelled uridine marker from the cumulus mass to the oocyte). A significant correlation was established between the amount of cAMP within the cumulus mass and that in the corresponding oocyte (r = 0.58). Above 10 microns-forskolin, the cAMP content of cumulus-enclosed oocytes was significantly greater than that of denuded oocytes (100 microns-forskolin: 0.118 +/- 0.082 and 0.006 +/- 0.001 pmol/oocyte respectively; P less than 0.001, paired t test), and the enhanced arresting action of forskolin upon cumulus-enclosed oocytes was correlated with an increase in intra-oocyte cAMP. Maintenance of meiotic arrest and stimulation of oocyte-cumulus cAMP were reversible. During 48 h of culture, the arresting action of forskolin (50 microns) was maintained on denuded and cumulus-enclosed oocytes but heterologous metabolic coupling significantly declined. The cAMP content of the cumulus mass and corresponding oocyte significantly declined, while that of the denuded oocyte remained unchanged. The cAMP content of arrested cumulus-enclosed oocytes cultured for 48 h in 50 microns-forskolin was significantly greater than that of maturing oocytes cultured for 24 h in 50 microns-forskolin and then for 24 h in control medium. These results show that (1) forskolin stimulates progesterone secretion and expansion of pig cumuli, but at high doses the drug inhibits these functions while cumulus cAMP remains elevated; (2) when heterologous metabolic coupling is maintained, cumulus cAMP may be transferred to the oocyte; (3) the pig oocyte can synthesize cAMP; and (4) forskolin-maintenance of meiotic arrest of pig oocytes is correlated with elevated intra-oocyte cAMP but a 'factor' other than cAMP is also involved in maintenance of meiotic arrest.  相似文献   

18.
The effect of the p42/44 mitogen-activated kinase (MAPK) inhibitor, PD98059, on MAPK activation and meiosis resumption in mouse oocytes was studied. When germinal vesicle (GV)-stage denuded oocytes (DOs) were cultured continuously in 50 microM PD98059, germinal vesicle breakdown (GVBD) was postponed for 2-3 h. MAPK phosphorylation and activation was delayed as well. However, PD98059 did not impair histone H1 kinase activation. After 14 h of culture there was no significant difference in the rate of DOs reaching metaphase II (MII) arrest in either control or experimental conditions. The effect of PD98059 on MAPK inhibition was further tested in epidermal growth factor (EGF)-treated oocytecumulus complexes (OCCs). Exposure of GV-stage OCCs for 5 min to EGF (10 ng/ml) induced a considerable increase in MAPK phosphorylation. After OCCs were further cultured in 50 microM PD98059 a rapid dephosphorylation of MAPK was induced. Already after 1 min of treatment the non-phosphorylated form of MAPK dominated, indicating the high effectivity of PD98059. This result indicates that short EGF/PD98059 treatment of OCCs induced MAPK phosphorylation/dephosphorylation in cumulus cells only. As only a transient delay in MAPK phosphorylation and activation was observed in PD98059-treated DOs we conclude that there is also another PD98059-nonsensitive pathway(s) leading to MAPK activation in mouse oocytes. The data obtained suggest that meiosis resumption in mouse oocytes is somehow influenced by the MEK/MAPK activation pathway.  相似文献   

19.
The present study was carried out to assess the possible role of mitogen-activated protein kinase (MAPK) in the meiosis-inducing action of the AMP-activated protein kinase (AMPK) activator, 5-aminoimidazole-4-carboxamide 1-beta-ribofuranoside (AICAR). Cumulus cell-enclosed oocytes (CEO) or denuded oocytes (DO) from immature, eCG-primed mice were cultured 4 hr in Eagle's minimum essential medium containing dbcAMP plus increasing concentrations of AICAR or okadaic acid (OA). OA is a phosphatase inhibitor known to stimulate both meiotic maturation and MAPK activation and served as a positive control. Both OA and AICAR were potent inducers of meiotic resumption in mouse oocytes and brought about the phosphorylation (and thus, activation) of MAPK, but by different kinetics: MAPK phosphorylation preceded GVB in OA-treated oocytes, while that resulting from AICAR treatment appeared only after GVB. The MEK inhibitors, PD98059 and U0126, blocked the meiotic resumption induced by AICAR but not that induced by OA. Although the MEK inhibitors suppressed MAPK phosphorylation in both OA- and AICAR-treated oocytes, meiotic resumption was not causally linked to MAPK phosphorylation in either group. Furthermore, AICAR-induced meiotic resumption in Mos-null oocytes (which are unable to stimulate MAPK) was also abrogated by PD98059 treatment. A non-specific effect of the MEK inhibitors on AICAR accessibility to the oocyte was discounted by showing that they failed to suppress either nucleoside uptake or AICAR-stimulated phosphorylation of acetyl CoA carboxylase (ACC), a substrate of AMPK. The suppression of AICAR-induced maturation by MEK inhibitors must, therefore, be occurring by actions unrelated to MEK stimulation of MAPK; consequently, it would be prudent to consider this possible non-specific action of the inhibitors when they are used to block MAPK activation in mouse oocytes.  相似文献   

20.
Mitogen-activated protein kinase (MAPK) is a family of Ser/Thr protein kinases that are widely distributed in eukaryotic cells. Studies in the last decade revealed that MAPK cascade plays pivotal roles in regulating the meiotic cell cycle progression of oocytes. In mammalian species, activation of MAPK in cumulus cells is necessary for gonadotropin-induced meiotic resumption of oocytes, while MAPK activation is not required for spontaneous meiotic resumption. After germinal vesicle breakdown (GVBD), MAPK is involved in the regulation of microtubule organization and meiotic spindle assembly. The activation of this kinase is essential for the maintenance of metaphase II arrest, while its inactivation is a prerequisite for pronuclear formation after fertilization or parthenogenetic activation. MAPK cascade interacts extensively with other protein kinases such as maturation-promoting factor, protein kinase A, protein kinase C, and calmodulin-dependent protein kinase II, as well as with protein phosphatases in oocyte meiotic cell cycle regulation. The cross talk between MAPK cascade and other protein kinases is discussed. The review also addresses unsolved problems and discusses future directions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号