首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
牛黑素皮质素受体1(MCIR)基因与毛色表型的研究   总被引:2,自引:0,他引:2  
牛MC1R基因不仅与毛色有关,而且与牛乳中乳蛋白的含量有关。利用PCR-RFLP和DNA测序技术分析了中国荷斯坦黑白花牛,中国荷斯坦红白花牛,鲁西黄牛和渤海黑牛共4个品种的MC1R基因。共检测出3种等位基因(ED,E ,e)。中国荷斯坦黑白花牛主要是ED和E 等位基因(ED=0.12、E =0.80);渤海黑牛也主要是ED和E 等位基因(ED=0.52、E =0.47);中国荷斯坦红白花牛和鲁西黄牛大多为e等位基因(e=0.95)。中国荷斯坦红白花牛和鲁西黄牛还存在E /e基因型。由此推测ED和E 等位基因导致黑色素合成。另外发现牛MC1R基因编码区725处存在一重要的SNP(单核苷酸多态性)。  相似文献   

2.
牛黑素皮质素受体1(MC1R)基因与毛色表形的研究   总被引:2,自引:0,他引:2  
牛MC1R基因不仅与毛色有关, 而且与牛乳中乳蛋白的含量有关。利用PCR-RFLP和DNA测序技术分析了中国荷斯坦黑白花牛, 中国荷斯坦红白花牛, 鲁西黄牛和渤海黑牛共4个品种的MC1R基因。共检测出3种等位基因(ED, E+, e)。中国荷斯坦黑白花牛主要是ED和E+等位基因(ED=0.12、E4=0.80); 渤海黑牛也主要是ED和E+等位基因(ED=0.52、E+=0.47); 中国荷斯坦红白花牛和鲁西黄牛大多为e等位基因(e=0.95)。中国荷斯坦红白花牛和鲁西黄牛还存在E+/e基因型。由此推测ED和E+等位基因导致黑色素合成。另外发现牛MC1R基因编码区725处存在一重要的SNP(单核苷酸多态性)。  相似文献   

3.
单核苷酸多态性在林木中的研究进展   总被引:4,自引:0,他引:4  
褚延广  苏晓华 《遗传》2008,30(10):1272-1278
摘要: 单核苷酸多态性(Single nucleotide polymorphisms, SNPs)是许多生物体最丰富的遗传变异形式。林木是重要的植物类群和陆地植物生态系统的重要组成部分, SNP作为新的分子标记已应用于松、杨、黄杉、桉和云杉等属的多个树种的遗传育种学研究, 获得了包括核苷酸多样性、连锁不平衡及群体结构等相关的遗传信息, 这些研究主要建立在对候选基因序列进行测序分析的基础上。基于SNP的关联遗传学分析或连锁不平衡(Linkage disequilibrium, LD)作图, 已成为研究林木复杂数量性状的理想工具, 对桉树和火炬松的关联遗传学研究发现, 多个基因内的SNP位点与不同的木材性状相关联。利用SNP标记对林木遗传参数的估算从不同程度上揭示了林木群体进化规律及其生态学意义。SNP标记在林木中应用的不断深入, 必将极大地推动林木遗传育种学研究的发展。  相似文献   

4.
秦川牛和中国荷斯坦牛POU1F1基因多态性研究   总被引:13,自引:1,他引:12  
严林俊  刘波  房兴堂  陈宏  张润锋  鲍斌  张海军 《遗传》2006,28(11):1371-1375
采用PCR-RFLP技术研究了秦川牛(QQ)和中国荷斯坦牛(HC)共计218头个体POU1F1基因的多态性。结果表明: 秦川牛及中国荷斯坦牛群体POU1F1-HinfⅠ基因座的451 bp 的PCR产物经限制性酶HinfⅠ消化后表现多态, 其等位基因A/B频率分别为0.232/0.768、0.132/0.868; 两个群体AA、AB和BB 3种基因型的频率分别为0.030/0.403/0.567、0.007/0.251/0.742。在该基因座秦川牛群体处于Hardy-Weinberg平衡状态, 中国荷斯坦牛群体处于不平衡状态。它们在该基因座的杂合度、有效等位基因数、Shannon信息熵、多态信息含量分别为0.356/1.553/0.541/0.292、0.229/1.297/0.390/0.203; 秦川牛群体的位点杂合度、有效等位基因数、Shannon信息熵、多态信息含量均大于中国荷斯坦牛群体。  相似文献   

5.
基于DNA池测序法筛选奶牛高信息量SNP标记的可行性   总被引:2,自引:0,他引:2  
初芹  李东  侯诗宇  石万海  刘林  王雅春 《遗传》2014,36(7):691-696
首先选择139个牛SNP标记, 利用DNA池测序法, 根据测序峰图中不同碱基信号峰高的比值确定了92个SNP为高信息量标记(比值>1/2); 为了进一步验证筛选的准确性, 对其中59个标记采用基质辅助激光解析电离飞行时间质谱(Matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry, MALDI-TOF MS)技术检测了122头荷斯坦牛的基因型。结果显示, 检出率高于85%的标记有56个, 其平均最小等位基因频率(Minor allele frequency, MAF)为0.41, 最小值为0.27, 最大值为0.5; MAF>0.3的标记有54个, 占96.4%(54/56)。文章结果表明, 采用DNA池测序法筛选高信息量SNP标记是可行和可信的。  相似文献   

6.
SNP芯片数据估计动物个体基因组品种构成的方法及应用   总被引:1,自引:0,他引:1  
自然和人工选择、地理隔离和遗传漂移等原因使动物基因组中许多位点的等位基因频率在群体间会产生差异。源于不同品种(祖先)杂交(交配)的动物个体,其基因组与这些品种(祖先)的基因频率(基因型)会存在一定的相关性。因此采用合适的统计模型和分析方法,可以估计出每个品种(祖先)对于个体基因组的遗传贡献比例,又称为个体的基因组品种构成(genomic breed composition, GBC)。本文介绍了利用SNP芯片数据估计动物个体GBC的原理、方法及步骤,并且通过对198头待鉴定的日本红毛和牛GBC的评估,演示了用回归模型和混合分布模型估计动物个体GBC的具体步骤,其中包括SNP子集的筛选、参考群体中动物个体选择以及待测定动物GBC的计算。参考动物群体选自日本红毛和牛(Akaushi)、安格斯牛(Angus)、海福特牛(Hereford)、荷斯坦牛(Holstein)和娟珊牛(Jersey) 5个品种共36 574头,每个个体有40K或50K芯片数据。本文在现有商用 SNP芯片基础上筛选用于品种鉴定和估计动物个体GBC的SNP子集,是对现有SNP芯片功能的拓展和深入开发利用。此外,在基因组选择中如何利用SNP基因型估计动物个体GBC的结果,提高纯种和杂种动物的预测准确度,也是值得深入研究的领域。  相似文献   

7.
生长性状是绵羊育种中关注的重要性状.GH和IGF-1基因已被证明是影响动物生长发育的重要候选基因.因此,了解中国本土绵羊GH和IGF-1基因的遗传多样性,将为提高本土绵羊的生产效率、制定遗传育种和品种改良措施奠定基础.本研究以本土绵羊品种呼伦贝尔羊、藏羊、湖羊、阿勒泰羊、小尾寒羊和滩羊为主要研究对象,以澳白羊为参考,通过Sanger测序检测了340只绵羊GH和IGF-1外显子单核苷酸多态性.研究发现,GH和IGF-1基因外显子区分别检测到11个和3个SNPs,呈品种特异性分布,在群体中处于低度至中度多态.连锁不平衡分析发现,GH基因的SNP1、SNP3、SNP6、SNP7和SNP8呈强连锁不平衡,构建的7种单倍型中,CGACAG是优势单倍型(52.6%),而IGF-1基因的3个SNPs之间连锁关系很弱.生物信息学分析发现,检测到的14个SNPs中GH的SNP2、SNP4、SNP8和IGF-1的SNP1、SNP3为新发现的多态位点,其中SNP4和SNP9为错义突变,可能会导致编码蛋白质二级结构与三级结构发生改变.研究结果表明,与其他本土品种和澳白羊相比,湖羊的GH和IGF-1基因具有较为丰富的遗传变异.已有研究证实GH的SNP6和SNP9以及IGF-1的SNP2不同基因型与绵羊的生长和胴体性状相关联,且在本土品种中均有多态,推测GH基因的SNP6、SNP9和IGF-1基因的SNP2可作为本土绵羊生长性状分子标记辅助选择的候选SNPs.  相似文献   

8.
为了探讨BoLA-DRA基因多态性,本研究利用DNA混合池扩增产物直接测序的方法对荷斯坦牛BoLA-DRA基因编码区SNPs进行筛选,并利用生物信息学软件预测该基因m RNA二级结构。结果表明:荷斯坦牛BoLA-DRA基因编码区共有4个SNPs (exon2-A82T,exon2-G116A,exon2-C197T,exon2-C233A)。生物信息学预测结果显示,exon2-A82T、exon2-G116A和exon2-C233A增大了m RNA二级结构的稳定性,而exon2-C197T降低了mRNA二级结构的稳定性。本研究结果可为荷斯坦牛抗病和抗逆性能研究积累更多的分子遗传学数据,并为经济性状相关基因筛选提供理论依据。  相似文献   

9.
研究旨在探讨生长激素释放激素基因(Growth hormone-releasing hormone,GHRH)对斑点叉尾鲖(Ictalurus punctatus)生长性状的影响。采用DNA混池测序法筛选GHRH基因的单核苷酸多态性(Singlenucleotide polymorphisms,SNPs)位点,使用SNaPshot法将筛选到的SNPs多态性位点进行分型,并对这些位点进行连锁不平衡和单倍型分析。结果表明,在GHRH基因内含子区域共检测到4个SNPs位点,并成功地对3个位点进行了分型,3个位点间均不存在强连锁不平衡;3个SNPs位点在176尾斑点叉尾鲖中形成了6种有效单倍型。关联分析表明SNP位点g.6301 GA的AA基因型的体质量显著性地高于AG和GG型(P0.05),比群体的平均体质量高14%。单倍型组合H1/H4和H1/H5个体的体质量和体长极显著性地高于其他单倍型组合(P0.01),体质量比群体平均体质量分别高30%和15%,体长比群体平均体长分别高7%和6%。研究为斑点叉尾鲖生长性状分子标记辅助选育和QTL定位提供了参考依据。  相似文献   

10.
研究旨在探讨生长激素释放激素基因(Growth hormone-releasing hormone,GHRH)对斑点叉尾(Ictalurus punctatus)生长性状的影响。采用DNA混池测序法筛选GHRH基因的单核苷酸多态性(Single nucleotide polymorphisms,SNPs)位点,使用SNa Pshot法将筛选到的SNPs多态性位点进行分型,并对这些位点进行连锁不平衡和单倍型分析。结果表明,在GHRH基因内含子区域共检测到4个SNPs位点,并成功地对3个位点进行了分型,3个位点间均不存在强连锁不平衡;3个SNPs位点在176尾斑点叉尾中形成了6种有效单倍型。关联分析表明SNP位点g.6301 GA的AA基因型的体质量显著性地高于AG和GG型(P0.05),比群体的平均体质量高14%。单倍型组合H1/H4和H1/H5个体的体质量和体长极显著性地高于其他单倍型组合(P0.01),体质量比群体平均体质量分别高30%和15%,体长比群体平均体长分别高7%和6%。研究为斑点叉尾生长性状分子标记辅助选育和QTL定位提供了参考依据。  相似文献   

11.
The pattern of linkage disequilibrium in German Holstein cattle   总被引:1,自引:0,他引:1  
This study presents a second generation of linkage disequilibrium (LD) map statistics for the whole genome of the Holstein–Friesian population, which has a four times higher resolution compared with that of the maps available so far. We used DNA samples of 810 German Holstein–Friesian cattle genotyped by the Illumina Bovine SNP50K BeadChip to analyse LD structure. A panel of 40 854 (75.6%) markers was included in the final analysis. The pairwise r2 statistic of SNPs up to 5 Mb apart across the genome was estimated. A mean value of r2 = 0.30 ± 0.32 was observed in pairwise distances of <25 kb and it dropped to 0.20 ± 0.24 at 50–75 kb, which is nearly the average inter‐marker space in this study. The proportion of SNPs in useful LD (r20.25) was 26% for the distance of 50 and 75 kb between SNPs. We found a lower level of LD for SNP pairs at the distance ≤100 kb than previously thought. Analysis revealed 712 haplo‐blocks spanning 4.7% of the genome and containing 8.0% of all SNPs. Mean and median block length were estimated as 164 ± 117 kb and 144 kb respectively. Allele frequencies of the SNPs have a considerable and systematic impact on the estimate of r2. It is shown that minimizing the allele frequency difference between SNPs reduces the influence of frequency on r2 estimates. Analysis of past effective population size based on the direct estimates of recombination rates from SNP data showed a decline in effective population size to Ne = 103 up to ~4 generations ago. Systematic effects of marker density and effective population size on observed LD and haplotype structure are discussed.  相似文献   

12.
Imputation of high-density genotypes from low- or medium-density platforms is a promising way to enhance the efficiency of whole-genome selection programs at low cost. In this study, we compared the efficiency of three widely used imputation algorithms (fastPHASE, BEAGLE and findhap) using Chinese Holstein cattle with Illumina BovineSNP50 genotypes. A total of 2108 cattle were randomly divided into a reference population and a test population to evaluate the influence of the reference population size. Three bovine chromosomes, BTA1, 16 and 28, were used to represent large, medium and small chromosome size, respectively. We simulated different scenarios by randomly masking 20%, 40%, 80% and 95% single-nucleotide polymorphisms (SNPs) on each chromosome in the test population to mimic different SNP density panels. Illumina Bovine3K and Illumina BovineLD (6909 SNPs) information was also used. We found that the three methods showed comparable accuracy when the proportion of masked SNPs was low. However, the difference became larger when more SNPs were masked. BEAGLE performed the best and was most robust with imputation accuracies >90% in almost all situations. fastPHASE was affected by the proportion of masked SNPs, especially when the masked SNP rate was high. findhap ran the fastest, whereas its accuracies were lower than those of BEAGLE but higher than those of fastPHASE. In addition, enlarging the reference population improved the imputation accuracy for BEAGLE and findhap, but did not affect fastPHASE. Considering imputation accuracy and computational requirements, BEAGLE has been found to be more reliable for imputing genotypes from low- to high-density genotyping platforms.  相似文献   

13.
Previous work identified SNP associations with twinning rate in the US Holstein population and developed a model for genomic prediction. The current study was conducted to assess the association of these SNPs with twinning rate and ovulation rate in a genetically diverse, outbred population selected for twinning and ovulation rate. A total of 18 SNPs that were components of a prediction equation for twinning rate in Holstein cattle were genotyped on 731 animals from the USDA Meat Animal Research Center production efficiency or twinning population. These 731 individuals were sires and dams well represented in the pedigrees of animals from the twinner population, and their genotypes were used in predicting genotypes for animals in the larger population (= 16 035). Twinning rate and ovulation rate were analyzed in a two‐trait repeated records analysis with marker associations analyzed individually as fixed effects. Criteria for marker validation were effect estimate with a sign consistent with previous estimates and significance at a nominal < 0.01. Of the 14 SNPs passing quality control assessments, only one was validated. A SNP in the 5′ flanking region of the IGF1 gene, discovered previously in a positional candidate gene analysis, was significantly associated with twinning rate in the USDA twinning population (< 0.0002). This SNP may have utility in genomic prediction of twinning rate beyond the Holstein population.  相似文献   

14.
We report the variance effective population size (Ne) in darkblotched rockfish (Sebastes crameri) utilizing the temporal method for overlapping generations, which requires a combination of age-specific demography and genetic information from cohorts. Following calculations of age-specific survival and reproductive success from fishery data, we genotyped a sample (n = 1087) comprised by 6 cohorts (from 1995 to 2000) across 7 microsatellite loci. Our Ne estimate (Ne) plus 95% confidence interval was (Ne) = 9157 [6495-12 215], showing that the breeding population number could be 3-4 orders of magnitude smaller than the census population size (N) = 24 376 210). Our estimates resemble closely those found for fishes with similar life history, suggesting that the small (Ne)/(N) ratio for S. crameri is most likely explained by a combination of high variance in reproductive success among individuals, genetic structure, and demographic perturbations such as historical fishing. Because small (Ne)/(N) ratios have been commonly associated with potential loss of genetic variation, our estimates need careful consideration in rockfish management and conservation.  相似文献   

15.
The single nucleotide polymorphisms (SNPs) in the 5′ upstream of bovine IL8 gene were investigated in 810 Chinese Holstein cows from 35 bull families in a dairy farm in Shanghai using polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) technique. The Real-time PCR and Western blot were used to detect the mRNA and protein levels of genotype Chinese Holstein dairy cows. The results showed that one SNP -105G>A was detected, designating three genotypes (GG, GA and AA) with respective frequencies of 0.38, 0.46, and 0.16. The significant association of the SNP -105G>A with somatic cell score (SCS) was identified. Genotype GG had a significantly lower SCS than genotype GA or AA (P < 0.01), and the relative mRNA expression and protein level of GG was found to be the highest. These results suggest that the genotype GG may be a useful genetic marker for mastitis resistance selection and breeding in Chinese Holstein dairy cows.  相似文献   

16.
Keller MC  Visscher PM  Goddard ME 《Genetics》2011,189(1):237-249
Inbreeding depression, which refers to reduced fitness among offspring of related parents, has traditionally been studied using pedigrees. In practice, pedigree information is difficult to obtain, potentially unreliable, and rarely assessed for inbreeding arising from common ancestors who lived more than a few generations ago. Recently, there has been excitement about using SNP data to estimate inbreeding (F) arising from distant common ancestors in apparently "outbred" populations. Statistical power to detect inbreeding depression using SNP data depends on the actual variation in inbreeding in a population, the accuracy of detecting that with marker data, the effect size, and the sample size. No one has yet investigated what variation in F is expected in SNP data as a function of population size, and it is unclear which estimate of F is optimal for detecting inbreeding depression. In the present study, we use theory, simulated genetic data, and real genetic data to find the optimal estimate of F, to quantify the likely variation in F in populations of various sizes, and to estimate the power to detect inbreeding depression. We find that F estimated from runs of homozygosity (Froh), which reflects shared ancestry of genetic haplotypes, retains variation in even large populations (e.g., SD=0.5% when Ne=10,000) and is likely to be the most powerful method of detecting inbreeding effects from among several alternative estimates of F. However, large samples (e.g., 12,000-65,000) will be required to detect inbreeding depression for likely effect sizes, and so studies using Froh to date have probably been underpowered.  相似文献   

17.
Knowledge of linkage disequilibrium (LD) is important for effective genome-wide association studies and accurate genomic prediction. Chinese Merino (Xinjiang type) is well-known fine wool sheep breed. However, the extent of LD across the genome remains unexplored. In this study, we calculated autosomal LD based on genome-wide SNPs of 635 Chinese Merino (Xinjiang type) sheep by Illumina Ovine SNP50 BeadChip. A moderate level of LD (r 2?≥?0.25) across the whole genome was observed at short distances of 0–10 kb. Further, the ancestral effective population size (N e ) was analyzed by extent of LD and found that N e increased with the increase of generations and declined rapidly within the most recent 50 generations, which is consistent with the history of Chinese Merino sheep breeding, initiated in 1971. We also noted that even when the effective population size was estimated across different single chromosomes, N e only ranged from 140.36 to 183.33 at five generations in the past, exhibiting a rapid decrease compared with that at ten generations in the past. These results indicated that the genetic diversity in Chinese Merino sheep recently decreased and proper protective measures should be taken to maintain the diversity. Our datasets provided essential genetic information to track molecular variations which potentially contribute to phenotypic variation in Chinese Merino sheep.  相似文献   

18.
The effective population size is influenced by many biological factors in natural populations. To evaluate their relative importance, we estimated the effective number of breeders per year (Nb) and effective population size per generation (Ne) in anadromous steelhead trout (Oncorhynchus mykiss) in the Hood River, Oregon (USA). Using demographic data and genetic parentage analysis on an almost complete sample of all adults that returned to the river over 15 years (>15,000 individuals), we estimated Nb for 13 run years and Ne for three entire generations. The results are as follows: (i) the ratio of Ne to the estimated census population size (N) was 0.17-0.40, with large variance in reproductive success among individuals being the primary cause of the reduction in Ne/N; (ii) fish from a traditional hatchery program (Htrad: nonlocal, multiple generations in a hatchery) had negative effects on Nb, not only by reducing mean reproductive success but also by increasing variance in reproductive success among breeding parents, whereas no sign of such effects was found in fish from supplementation hatchery programs (Hsupp: local, single generation in a hatchery); and (iii) Nb was relatively stable among run years, despite the widely fluctuating annual run sizes of anadromous adults. We found high levels of reproductive contribution of nonanadromous parents to anadromous offspring when anadromous run size is small, suggesting a genetic compensation between life-history forms (anadromous and nonanadromous). This is the first study showing that reproductive interaction between different life-history forms can buffer the genetic impact of fluctuating census size on Ne.  相似文献   

19.
Fibroblast growth factor 2 ( FGF2 ) plays an important role in fertility and early embryo development. The objectives of this study were to test the association of FGF2 polymorphisms with fertilization success in cattle using an in vitro fertilization experimental system and to investigate the mechanisms leading to the presence of rare alleles of FGF2 in the Holstein population. A total of 7502 fertilizations were performed and a total of 5049 embryos were produced to collect fertilization and embryo survival records. A total of 444 ovaries, from which oocytes were aspirated and fertilized, were genotyped for two single nucleotide polymorphisms (SNPs) previously identified in FGF2 (g.23G>T and g.11646A>G). Frequency of the TT genotype of the g.23G>T SNP was low in the ovary population (5.4%) and in a different Holstein cattle population (6.6%) examined in this study. Single SNP analysis showed that both SNPs were associated with early embryonic survival rate. Two-way interaction analysis revealed significant association of epistatic interaction between the SNPs with fertilization rate. To test whether or not low frequency of allele T for the g.23G>T SNP in the population is a result of a fertilization failure of T oocytes, semen from six GG bulls was used to fertilize a total of 458 oocytes obtained from 19 GT ovaries. A significant segregation distortion was observed for 169 embryos genotyped for the g.23G>T SNP. We conclude that oocytes carrying the T allele show a reduced fertilization rate and that segregation distortion leads to rarity of the TT genotype in the population.  相似文献   

20.
Waples RS 《Molecular ecology》2005,14(11):3335-3352
Although most genetic estimates of contemporary effective population size (Ne) are based on models that assume Ne is constant, in real populations Ne changes (often dramatically) over time, and estimates (Ne) will be influenced by Ne in specific generations. In such cases, it is important to properly match Ne to the appropriate time periods (for example, in computing Ne/N ratios). Here I consider this problem for semelparous species with two life histories (discrete generations and variable age at maturity--the 'salmon' model), for two different sampling plans, and for estimators based on single samples (linkage disequilibrium, heterozygote excess) and two samples (temporal method). Results include the following. Discrete generations: (i) Temporal samples from generations 0 and t estimate the harmonic mean Ne in generations 0 through t - 1 but do not provide information about Ne in generation t; (ii) Single samples provide an estimate of Ne in the parental generation, not the generation sampled; (iii) single-sample and temporal estimates never provide information about Ne in exactly the same generations; (iv) Recent bottlenecks can downwardly bias estimates based on linkage disequilibrium for several generations. Salmon model: (i) A pair of single-cohort (typically juvenile) samples from years 0 and t provide a temporal estimate of the harmonic mean of the effective numbers of breeders in the two parental years (N b(0) and N b(t)), but adult samples are more difficult to interpret because they are influenced by Nb in a number of previous years; (ii) For single-cohort samples, both one-sample and temporal methods provide estimates of Nb in the same years (contrast with results for discrete generation model); (iii) Residual linkage disequilibrium associated with past population size will not affect single-sample estimates of Nb as much as in the discrete generation model because the disequilibrium diffuses among different years of breeders. These results lead to some general conclusions about genetic estimates of Ne in iteroparous species with overlapping generations and identify areas in need of further research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号