首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
利用膜片钳技术对模式植物拟南芥根皮层细胞原生质体的内向跨膜钾电流进行了全细胞记录 ,并对内向K+通道的特性进行了分析 .结果表明 ,拟南芥根细胞质膜上的内向K+通道由超极化膜电位所激活 ;该通道具有较高的K+/Na+选择性 ,可被TEA+和Ba2 +等K+通道阻断剂所抑制 ,而且对胞内自由Ca2 +浓度变化不敏感 .这为进一步利用模式植物拟南芥进行植物K+吸收机制以及植物抗盐机制的研究奠定了基础 .  相似文献   

2.
ω-芋螺毒素及其在 Ca2+通道研究中的应用   总被引:1,自引:0,他引:1  
ω-芋螺毒素(ω-CTX)——一组含25—29个氨基酸残基的亲水肽,已能人工合成,是近年从海产软体动物中发现的专一作用于电压敏感性钙通道的突触前阻断剂,利用它和双氢吡啶类药物可将细胞膜的 Ca2+通道区分为不同亚型.  相似文献   

3.
空泡膜类型H+-ATPase的研究进展   总被引:5,自引:3,他引:2  
真核细胞内空泡细胞器,如高尔基体、内质网、溶酶体等,膜上存在的质子泵ATPase 与线粒体类型的质子泵 ATPase 类似.近几年对该类型 H+-ATPase 的结构、作用机制进行了深入的研究,证明这是一类新型质子泵,在进化的过程中与线粒体类型的 H+-ATPase 有密切的亲缘关系.  相似文献   

4.
细胞膜片钳技术是研究膜离子通道的有效方法.在单个细胞上反复形成多次全细胞构型从而在同一细胞上观察某些药物的长时间作用对于通道膜电流的影响.利用全细胞构型下胞浆与电极内液的连通可以方便地向胞内引入药物.以此法研究MPP+多巴胺能神经瘤细胞(MN9D)的毒性作用表明MPP+导致细胞电压依赖性钙电流(ICa)显著下降;MPP+作用1 h以内高去极化电压较低去极化电压诱发的钙电流先受MPP+影响而下降; MPP+对未分化细胞的钙电流无显著作用(n=3).  相似文献   

5.
赵宏亮  倪细炉  侯晖  谢沁宓  程昊 《广西植物》2022,42(7):1150-1159
为揭示长苞香蒲(Typha domingensis)对盐生湿地生态系统中Na+和K+的吸收与转运特征,探讨长苞香蒲对盐生湿地的生态修复效果,该研究采用人工模拟盐生湿地的方法,设置CK(对照)、T1(浇灌100 mmol·L-1盐水)、T2(浇灌200 mmol·L-1盐水)及T3(浇灌300 mmol·L-1盐水)4种不同盐浓度的人工湿地生态系统,并分别于5月5日(开始盐胁迫处理,S0)、5月30日(S1)、6月30日(S2)和7月30日(S3)测量其株高和干重、植株地上与地下部分Na+和K+的含量以及底泥和水体中Na+和K+的含量以分析长苞香蒲对盐碱湿地的脱盐作用。结果表明:(1)各处理的长苞香蒲的株高和干重随着处理时间的延长呈增加趋势,但与CK 相比,各处理生长量随盐浓度升高出现下降趋势。(2)高浓度盐处理(T3)使长苞香蒲的地上部分和地下部分的Na+分别增加了2.56倍和1.75倍,地上部分及地下部分的K+含量分别降低了34.1%和35.8%。(3)地上部分和地下部分的Na+/K+在处理和对照间均随处理时间延长呈增加的趋势,选择性转移系数与Na+和K+转移系数总体随处理时间延长呈降低的趋势。(4)在S0至S3期间,长苞香蒲对处理组土壤Na+和K+的去除率为10.6%~15.8%和2.3%~12.8%,对处理组水体Na+和K+的去除率为55.0%~65.1%和1.6%~67.0%。综上表明,盐胁迫能影响长苞香蒲体内的Na+和 K+平衡,长苞香蒲能够有效地吸收Na+,并在一定盐浓度下能通过K+的交换将Na+从根部吸收转运至地上部分。因此,长苞香蒲可通过离子转运的形式完成对盐离子的吸收,可作为盐碱湿地生态修复的优良植物。  相似文献   

6.
本文介绍了晶状体的结构与功能,并着重介绍了与白内障有密切关系的离子转运的研究概况。大多数学者认为,白内障晶状体的离子泵Na+,K+-ATPase和Ca2+-ATPase活力下降,也有人认为Na+,K+-ATPase的活力没有变化。  相似文献   

7.
HLA-A*2402是中国人群中最常见的等位基因之一,为研究该基因型人群的人巨细胞病毒(HCMV)特异性细胞毒T细胞(CTL)免疫应答,需要制备负载相应抗原肽的HLA-A*2402四聚体。以RT-PCR方法克隆HLA-A*2402重链基因的cDNA,并构建了羧基端融合生物素化酶BirA底物肽(BSP)的HLA-A*2402重链胞外域融合蛋白(HLA-A*2402-BSP)的表达载体,但该载体不能在大肠杆菌(E. coli)中有效表达HLA-A*2402-BSP融合蛋白;通过对氨基端(N端)区域编码区的密码子进行优化,构建了同义突变的HLA-A*2402-BSP表达载体,融合蛋白在E. coli中获得了高效表达。进而制备了负载HLA-A*2402限制性HCMV pp65341-349抗原肽(QYDPVAALF, QYD)的可溶性HLA-A*2402-QYD单体分子和四聚体,获得的四聚体具有与HLA-A24+供者抗原特异性CTL的结合活性,特异性CTL的频率为总CD8+T细胞的0.09%~0.37%。这些结果为进一步研究HLA-A*2402限制性的特异性CTL免疫应答规律奠定基础。  相似文献   

8.
HLA-A*2402是中国人群中最常见的等位基因之一,为研究该基因型人群的人巨细胞病毒(HCMV)特异性细胞毒T细胞(CTL)免疫应答,需要制备负载相应抗原肽的HLA-A*2402四聚体。以RT-PCR方法克隆HLA-A*2402重链基因的cDNA,并构建了羧基端融合生物素化酶BirA底物肽(BSP)的HLA-A*2402重链胞外域融合蛋白(HLA-A*2402-BSP)的表达载体,但该载体不能在大肠杆菌(E. coli)中有效表达HLA-A*2402-BSP融合蛋白;通过对氨基端(N端)区域编码区的密码子进行优化,构建了同义突变的HLA-A*2402-BSP表达载体,融合蛋白在E. coli中获得了高效表达。进而制备了负载HLA-A*2402限制性HCMV pp65341-349抗原肽(QYDPVAALF, QYD)的可溶性HLA-A*2402-QYD单体分子和四聚体,获得的四聚体具有与HLA-A24+供者抗原特异性CTL的结合活性,特异性CTL的频率为总CD8+T细胞的0.09%~0.37%。这些结果为进一步研究HLA-A*2402限制性的特异性CTL免疫应答规律奠定基础。  相似文献   

9.
Na+/H+交换泵(Na+/H+ exchanger, NHE)是存在于所有脊椎动物细胞中的重要跨膜蛋白,该蛋白质涉及细胞的多种功能,包括细胞内pH值调节、细胞体积的控制以及离子转运等.目前已克隆了五个亚型NHE的cDNA,它们构成了脊椎动物细胞离子转运泵的一个基因家族. 这五个亚型的表达水平及活性可受多种因素的调节.在肿瘤、高血压及糖尿病等疾病中,已发现NHE-1亚型的表达水平和活性显著增高.因此,研究NHE-1的转录及活性调节机制,将可能为这些疾病的诊治提供新的手段.  相似文献   

10.
川楝素是我国学者从驱蛔中药中分离、鉴定的一个三萜化合物,已证明具选择地影响神经递质释放,有效地对抗肉毒中毒,促进细胞分化、凋亡,抑制肿瘤增殖,抑制昆虫发育和取食,影响K+、Ca2+通道活动等多种生物效应. 综述了证明川楝素抑制多种K+通道,选择地易化L型Ca2+通道和进而升高胞内Ca+浓度的研究资料,并对川楝素产生这些生物效应的机制进行了讨论.  相似文献   

11.
蝎短肽链神经毒素研究进展   总被引:2,自引:0,他引:2  
对蝎短肽链神经毒素结构与功能研究进展作了简要的论述,蝎毒中富含短肽链神经毒素,至今已经分离纯化到60多种,它们的大小介于28-41个氨基酸残基之间,分子中含有3-4对二硫键,空间结构紧密,这些毒素可以特异性地与K+,Cl-和Ca2 等离子通道相结合,由于它们对离子通道的选择性,这些毒素在药理学和神经生物学中已经得到了广泛的应用。  相似文献   

12.
Agitoxin 2 (AgTx2) is a 38-residue scorpion toxin, cross-linked by three disulfide bridges, which acts on voltage-gated K(+) (Kv) channels. Maurotoxin (MTX) is a 34-residue scorpion toxin with an uncommon four-disulfide bridge reticulation, acting on both Ca(2+)-activated and Kv channels. A 39-mer chimeric peptide, named AgTx2-MTX, was designed from the sequence of the two toxins and chemically synthesized. It encompasses residues 1-5 of AgTx2, followed by the complete sequence of MTX. As established by enzyme cleavage, the new AgTx2-MTX molecule displays half-cystine pairings of the type C1-C5, C2-C6, C3-C7, and C4-C8, which is different from that of MTX. The 3D structure of AgTx2-MTX solved by (1)H-NMR, revealed both alpha-helical and beta-sheet structures, consistent with a common alpha/beta scaffold of scorpion toxins. Pharmacological assays of AgTx2-MTX revealed that this new molecule is more potent than both original toxins in blocking rat Kv1.2 channel. Docking simulations, performed with the 3D structure of AgTx2-MTX, confirmed this result and demonstrated the participation of the N-terminal domain of AgTx2 in its increased affinity for Kv1.2 through additional molecular contacts. Altogether, the data indicated that replacement of the N-terminal domain of MTX by the one of AgTx2 in the AgTx2-MTX chimera results in a reorganization of the disulfide bridge arrangement and an increase of affinity to the Kv1.2 channel.  相似文献   

13.
Pi4 is a short toxin found at very low abundance in the venom of Pandinus imperator scorpions. It is a potent blocker of K(+) channels. Like the other members of the alpha-KTX6 subfamily to which it belongs, it is cross-linked by four disulfide bonds. The synthetic analog (sPi4) and the natural toxin (nPi4) have been obtained by solid-phase synthesis or from scorpion venom, respectively. Analysis of two-dimensional (1)H NMR spectra of nPi4 and sPi4 indicates that both peptides have the same structure. Moreover, electrophysiological recordings of the blocking of Shaker B K(+) channels by sPi4 (K(D) = 8.5 nM) indicate that sPi4 has the same blocking activity of nPi4 (K(D) = 8.0 nM), previously described. The disulfide bonds have been independently determined by NMR and structure calculations, and by Edman-degradation/mass-spectrometry identification of peptides obtained by proteolysis of nPi4. Both approaches indicate that the pairing of the half-cystines is (6)C-(27)C, (12)C-(32)C, (16)C-(34)C, and (22)C-(37)C. The structure of the toxin has been determined by using 705 constraints derived from NMR data on sPi4. The structure, which is well defined, shows the characteristic alpha/beta scaffold of scorpion toxins. It is compared to the structure of the other alpha-KTX6 subfamily members and, in particular, to the structure of maurotoxin, which shows a different pattern of disulfide bridges despite its high degree of sequence identity (76%) with Pi4. The structure of Pi4 and the high amounts of synthetic peptide available, will enable the detailed analysis of the interaction of Pi4 with K(+) channels.  相似文献   

14.
Scorpion toxins specific for Na+-channels.   总被引:17,自引:0,他引:17  
Na+-channel specific scorpion toxins are peptides of 60-76 amino acid residues in length, tightly bound by four disulfide bridges. The complete amino acid sequence of 85 distinct peptides are presently known. For some toxins, the three-dimensional structure has been solved by X-ray diffraction and NMR spectroscopy. A constant structural motif has been found in all of them, consisting of one or two short segments of alpha-helix plus a triple-stranded beta-sheet, connected by variable regions forming loops (turns). Physiological experiments have shown that these toxins are modifiers of the gating mechanism of the Na+-channel function, affecting either the inactivation (alpha-toxins) or the activation (beta-toxins) kinetics of the channels. Many functional variations of these peptides have been demonstrated, which include not only the classical alpha- and beta-types, but also the species specificity of their action. There are peptides that bind or affect the function of Na+-channels from different species (mammals, insects or crustaceans) or are toxic to more than one group of animals. Based on functional and structural features of the known toxins, a classification containing 10 different groups of toxins is proposed in this review. Attempts have been made to correlate the presence of certain amino acid residues or 'active sites' of these peptides with Na+-channel functions. Segments containing positively charged residues in special locations, such as the five-residue turn, the turn between the second and the third beta-strands, the C-terminal residues and a segment of the N-terminal region from residues 2-11, seems to be implicated in the activity of these toxins. However, the uncertainty, and the limited success obtained in the search for the site through which these peptides bind to the channels, are mainly due to the lack of an easy method for expression of cloned genes to produce a well-folded, active peptide. Many scorpion toxin coding genes have been obtained from cDNA libraries and from polymerase chain reactions using fragments of scorpion DNAs, as templates. The presence of an intron at the DNA level, situated in the middle of the signal peptide, has been demonstrated.  相似文献   

15.
Maurotoxin (MTX) is a 34-mer scorpion toxin cross-linked by four disulfide bridges that acts on both Ca(2+)-activated (SK) and voltage-gated (Kv) K(+) channels. A 38-mer chimera of MTX, Tsk-MTX, has been synthesized by the solid-phase method. It encompasses residues from 1 to 6 of Tsk at N-terminal, and residues from 3 to 34 of MTX at C-terminal. As established by enzyme cleavage, Tsk-MTX displays half-cystine pairings of the type C1-C5, C2-C6, C3-C7 and C4-C8 which, contrary to MTX, correspond to a disulfide bridge pattern common to known scorpion toxins. The 3-D structure of Tsk-MTX, solved by (1)H NMR, demonstrates that it adopts the alpha/beta scaffold of scorpion toxins. In vivo, Tsk-MTX is lethal by intracerebroventricular injection in mice (LD(50) value of 0.2 microg/mouse). In vitro, Tsk-MTX is as potent as MTX, or Tsk, to interact with apamin-sensitive SK channels of rat brain synaptosomes (IC(50) value of 2.5 nM). It also blocks voltage-gated K(+) channels expressed in Xenopus oocytes, but is inactive on rat Kv1.3 contrary to MTX.  相似文献   

16.
A novel inhibitor of voltage-gated potassium channel was isolated and purified to homogeneity from the venom of the red scorpion Buthus tamulus. The primary sequence of this toxin, named BTK-2, as determined by peptide sequencing shows that it has 32 amino acid residues with six conserved cysteines. The molecular weight of the toxin was found to be 3452 Da. It was found to block the human potassium channel hKv1.1 (IC(50)=4.6 microM). BTK-2 shows 40-70% sequence similarity to the family of the short-chain toxins that specifically block potassium channels. Multiple sequence alignment helps to categorize the toxin in the ninth subfamily of the K+ channel blockers. The modeled structure of BTK-2 shows an alpha/beta scaffold similar to those of the other short scorpion toxins. Comparative analysis of the structure with those of the other toxins helps to identify the possible structure-function relationship that leads to the difference in the specificity of BTK-2 from that of the other scorpion toxins. The toxin can also be used to study the assembly of the hKv1.1 channel.  相似文献   

17.
A new K(+)-channel blocking peptide identified from the scorpion venom of Tityus cambridgei (Tc1) is composed of 23 amino acid residues linked with three disulfide bridges. Tc1 is the shortest known toxin from scorpion venom that recognizes the Shaker B K(+) channels and the voltage-dependent K(+) channels in the brain. Synthetic Tc1 was produced using solid-phase synthesis, and its activity was found to be the same as that of native Tc1. The pairings of three disulfide bridges in the synthetic Tc1 were identified by NMR experiments. The NMR solution structures of Tc1 were determined by simulated annealing and energy-minimization calculations using the X-PLOR program. The results showed that Tc1 contains an alpha-helix and a 3(10)-helix at N-terminal Gly(4)-Lys(10) and a double-stranded beta-sheet at Gly(13)-Ile(16) and Arg(19)-Tyr(23), with a type I' beta-turn at Asn(17)-Gly(18). Superposition of each structure with the best structure yielded an average root mean square deviation of 0.26 +/- 0.05 A for the backbone atoms and of 1.40 +/- 0.23 A for heavy atoms in residues 2 to 23. The three-dimensional structure of Tc1 was compared with two structurally and functionally related scorpion toxins, charybdotoxin (ChTx) and noxiustoxin (NTx). We concluded that the C-terminal structure is the most important region for the blocking activity of voltage-gated (Kv-type) channels for scorpion K(+)-channel blockers. We also found that some of the residues in the larger scorpion K(+)-channel blockers (31 to 40 amino acids) are not involved in K(+)-channel blocking activity.  相似文献   

18.
kappa-Conotoxin-PVIIA (kappa-PVIIA) belongs to a family of peptides derived from a hunting marine snail that targets to a wide variety of ion channels and receptors. kappa-PVIIA is a small, structurally constrained, 27-residue peptide that inhibits voltage-gated K channels. Three disulfide bonds shape a characteristic four-loop folding. The spatial localization of positively charged residues in kappa-PVIIA exhibits strong structural mimicry to that of charybdotoxin, a scorpion toxin that occludes the pore of K channels. We studied the mechanism by which this peptide inhibits Shaker K channels expressed in Xenopus oocytes with the N-type inactivation removed. Chronically applied to whole oocytes or outside-out patches, kappa-PVIIA inhibition appears as a voltage-dependent relaxation in response to the depolarizing pulse used to activate the channels. At any applied voltage, the relaxation rate depended linearly on the toxin concentration, indicating a bimolecular stoichiometry. Time constants and voltage dependence of the current relaxation produced by chronic applications agreed with that of rapid applications to open channels. Effective valence of the voltage dependence, zdelta, is approximately 0.55 and resides primarily in the rate of dissociation from the channel, while the association rate is voltage independent with a magnitude of 10(7)-10(8) M-1 s-1, consistent with diffusion-limited binding. Compatible with a purely competitive interaction for a site in the external vestibule, tetraethylammonium, a well-known K-pore blocker, reduced kappa-PVIIA's association rate only. Removal of internal K+ reduced, but did not eliminate, the effective valence of the toxin dissociation rate to a value <0.3. This trans-pore effect suggests that: (a) as in the alpha-KTx, a positively charged side chain, possibly a Lys, interacts electrostatically with ions residing inside the Shaker pore, and (b) a part of the toxin occupies an externally accessible K+ binding site, decreasing the degree of pore occupancy by permeant ions. We conclude that, although evolutionarily distant to scorpion toxins, kappa-PVIIA shares with them a remarkably similar mechanism of inhibition of K channels.  相似文献   

19.
A novel inhibitor of voltage-gated K(+) channels has been purified to homogeneity from the venom of the black scorpion Orthochirus scrobiculosus. This toxin, named OsK2, has been characterized as a 28-residue peptide, containing six conserved cysteine residues and was shown to be a potent and selective blocker of Kv1.2 channels (K(d) = 97 nM). OsK2 is the second member of the 13th subfamily of short-chain K(+) channel-blocking peptides known thus far and is therefore called alpha-KTx 13.2.  相似文献   

20.
The very first member of K(+) channels toxins from the venom of the Iranian scorpion Odonthobuthus doriae (OdK1) was purified, sequenced and characterized physiologically. OdK1 has 29 amino acids, six conserved cysteines and a pI value of 4.95. Based on multiple sequence alignments, OdK1 was classified as alpha-KTx 8.5. The pharmacological effects of OdK1 were studied on six different cloned K(+) channels (vertebrate Kv1.1-Kv1.5 and Shaker IR) expressed in Xenopus laevis oocytes. Interestingly, OdK1 selectively inhibited the currents through Kv1.2 channels with an IC50 value of 183+/-3 nM but did not affect any of the other channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号