首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Telomerase activity and telomere detection during early bovine development   总被引:5,自引:0,他引:5  
The ends of mammalian chromosomes are composed of repeated DNA sequences of (TTAGGG)(n) known as telomeres. Telomerase is a ribonucleoprotein that synthesizes telomeric DNA to replenish the 50-200 bp lost during cell replication. Cellular aging and senescence are associated with a lack of telomerase activity and a critical shortening of the telomere. The objectives of this study were to confirm the presence of TTAGGG repeats on the chromosomes of bovine embryos using in situ hybridization and assess the relative amounts of telomerase activity using a telomeric repeat amplification protocol (TRAP) during oocyte maturation and early embryo development. Applying a telomere DNA probe to the chromosomes of blastocysts and adult fibroblasts, telomeres were identified on the terminal ends of the p and q arms of chromosomes in all cells examined. Immature oocytes, matured oocytes, zygotes, 2- to 5-cell embryos, 6- to 8-cell embryos, morulae, and blastocysts were lysed in NP-40 lysis buffer and telomerase activity was assayed using the TRAP assay. Telomerase activity was detected in all developmental stages examined. Relative telomerase activity (based on telomerase internal standards and positive controls) appeared to decrease during oocyte maturation and subsequent development to the 8-cell stage but significantly increased (P < 0.05) by approximately 40-fold at the morula and blastocyst stages. It was concluded that the telomeres of bovine chromosomes contain TTAGGG repeats and that telomerase activity is up-regulated in morulae and blastocysts.  相似文献   

2.
The pleiotropy of telomerase against cell death   总被引:5,自引:0,他引:5  
  相似文献   

3.
4.
Yamagiwa Y  Meng F  Patel T 《Life sciences》2006,78(21):2494-2502
BACKGROUND/AIMS: Cellular senescence results in irreversible growth arrest. In malignant cells, senescence is prevented by maintenance of chromosomal length by telomerase activity. Telomerase activity is increased in malignant, but not in normal cholangiocytes. Interleukin-6 (IL-6) is an autocrine promoter of cholangiocarcinoma growth. Our aims were to assess the relationship between IL-6 activated p38 mitogen-activated protein kinase (MAPK) pathways and senescence in malignant cholangiocytes. METHODS: Cell senescence and telomerase activity was assessed in Mz-ChA-1 malignant human cholangiocytes. The effect of inhibitors of p38 MAPK and telomerase activity on cell proliferation was assessed, and the interaction between these inhibitors was quantitated by median effects analysis. RESULTS: Mz-ChA-1 cells rapidly underwent senescence during repeated passaging. IL-6 increased telomerase activity and decreased cellular senescence during repeated passaging. However, basal telomerase activity was increased by inhibition of p38 MAPK. Inhibition of telomerase activity decreased IL-6 induced proliferation and had a synergistic effect with p38 MAPK inhibitors. Thus, IL-6 increases telomerase activity independent of p38 MAPK signaling and maintenance of telomerase activity promotes cholangiocarcinoma growth. CONCLUSION: Enhanced telomerase activity in response to IL-6 stimulation can prevent cellular senescence and thereby contribute to cholangiocarcinoma growth. Inhibition of telomerase activity may therefore be therapeutically useful in biliary tract malignancies.  相似文献   

5.
Mitochondrial hTERT exacerbates free-radical-mediated mtDNA damage   总被引:6,自引:0,他引:6  
  相似文献   

6.
7.
Telomeres, telomerase, and myc. An update   总被引:16,自引:0,他引:16  
Cerni C 《Mutation research》2000,462(1):31-47
  相似文献   

8.
9.
10.
Telomerase, a telomere-specific DNA polymerase and novel target for chemotherapeutic intervention, is found in many types of cancers. Telomerase activity is typically assayed using an exogenous primer and cellular extracts as the source of enzyme. Since the nuclear organization might affect telomerase function, we developed a system in which telomerase in intact nuclei catalyzes primer extension. Telomerase activity in isotonically isolated nuclei from human CEM cells shows low processivity (addition of up to four TTAGGG repeats). In contrast, telomerase activity which leaks into a 500 g postnuclear supernatant and the activity in a CHAPS extract are highly processive. The nucleotide inhibitor, 7-deaza-dGTP, seems to be more inhibitory against the nuclei-associated enzyme compared to telomerase from cytoplasmic extracts. However, 7-deaza-dATP and ddGTP are less inhibitory against nuclei-associated telomerase. The results suggest that the association of telomerase with the nuclear chromatin affects telomerase activity. Examination of telomerase activity in a more natural nuclear environment may shed new light on the telomerase function and provide a useful system for the evaluation of new telomerase inhibitors.  相似文献   

11.
The aberrant activation of oncogenic pathways promotes tumor progression, but concomitantly elicits compensatory tumor-suppressive responses, such as apoptosis or senescence. For example, Ras induces senescence, while Myc generally triggers apoptosis. Myc is in fact viewed as an anti-senescence oncogene, as it is a potent inducer of cell proliferation and immortalization, bypasses growth-inhibitory signals, and cooperates with Ras in cellular transformation. Recent reports prompt re-evaluation of Myc-induced senescence, and of its role in tumor progression and therapy. We have shown that the cyclin-dependent kinase Cdk2, although redundant for cell cycle progression, has a unique role in suppressing a Myc-induced senescence program: Myc activation elicited expression of p16INK4a and p21Cip1, and caused senescence in cell lacking Cdk2, but not in Cdk2-proficient cells. Additional cellular activities have been identified that suppress Myc-induced senescence, including the Wrn helicase, Telomerase and Miz1. These senescence-suppressing activities were critical for tumor progression, as deficiency in Cdk2, telomerase or Miz1 reduced the onset of Myc-induced lymphoma in transgenic mice. Other gene products like p53, SUV39H1 or TGFß promoted senescence, which together with apoptosis contributed to tumor suppression. Paradoxically, Myc directly counteracted the very same senescence program that it potentially elicits, since it positively regulated Wrn, Telomerase and Cdk2 activity, and Cdk2 inhibition re-activated the latent senescence program in Myc expressing cells. Hence, while these molecules are instrumental to the oncogenic action of Myc, they may simultaneously constitute its Achille's heel for therapeutic development.  相似文献   

12.
13.
14.
Telomerase is a ribonucleoprotein complex that catalyses the addition of TTAGGG repeats onto telomeres, repetitive DNA structures found at the ends of linear chromosomes. The majority of human somatic tissues do not display telomerase activity and undergo telomeric shortening with consecutive divisions. This telomeric shortening results in replicative senescence in vitro and likely in vivo. Telomerase activity is present in the vast majority of tumors, preventing telomeric shortening and thereby enabling indefinite cell divisions. Telomerase activity is regulated throughout human development, undergoing silencing in almost all organ systems from embryogenesis onwards. However, regulated telomerase activity is seen in basal/stem cell compartments of highly regenerative tissues, such as those of the immune system, skin, and intestine. Avian species display telomerase repression and telomeric shortening similar to that seen in humans. However, rodents retain telomerase-competency throughout their lifespan and have not been shown to display division-dependent telomere shortening. The regulation of telomerase activity in plants is less well understood, although early indications suggest ubiquitous competency. The aim of this review is to present current data regarding developmental regulation of telomerase in humans, mice, chickens and flowering plants. Differentiation, quiescence and telomerase activity regulation will then be addressed in three human representative tissue systems; blood, skin, and intestine. We will also highlight similarities, differences and misconceptions in the developing field of telomere and telomerase biology.  相似文献   

15.
文蕾  凌贤龙 《生命科学》2010,(10):1005-1008
端粒酶是一种逆转录酶,主要存在于细胞核,其主要功能是维持端粒长度,有助于细胞永生化。现已发现,氧化应激可以改变端粒酶活性,促使端粒酶从细胞核转位到线粒体,因而不能继续维持端粒长度,使细胞端粒缩短。端粒酶线粒体转位的非依赖端粒功能包括改善线粒体功能、减少细胞氧化应激、拮抗细胞凋亡。  相似文献   

16.
Regulation of telomerase activity in immortal cell lines.   总被引:26,自引:0,他引:26       下载免费PDF全文
Telomerase is a ribonucleoprotein whose activity has been detected in germ line cells, immortal cells, and most cancer cells. Except in stem cells, which have a low level of telomerase activity, its activity is absent from normal somatic tissues. Understanding the regulation of telomerase activity is critical for the development of potential tools for the diagnosis and treatment of cancer. Using the telomeric repeat amplification protocol, we found that immortal, telomerase-positive, pseudodiploid human cells (HT1080 and HL60 cells) sorted by flow repressed in quiescent cells. This was true whether quiescence was induced by contact inhibition (NIH 3T3 mouse cells), growth factor removal (bromodeoxyuridine-blocked mouse myoblasts), reexpression of cellular senescence (the reversibly immortalized IDH4 cells), or irreversible cell differentiation (HL60 promyelocytic leukemia cells and C2C12 mouse myoblasts). Taken together, these results indicate that telomerase is active throughout the cell in dividing, immortal cells but that its activity is repressed in cells that exit the cell cycle. This suggests that quiescent stem cells that have the potential to express telomerase may remain unaffected by potential antitelomerase cancer therapies.  相似文献   

17.
Mitochondrial dysfunction and oxidative stress have been implicated in cellular senescence, apoptosis, aging and aging-associated pathologies. Telomere shortening and genomic instability have also been associated with replicative senescence, aging and cancer. Here we show that mitochondrial dysfunction leads to telomere attrition, telomere loss, and chromosome fusion and breakage, accompanied by apoptosis. An antioxidant prevented telomere loss and genomic instability in cells with dysfunctional mitochondria, suggesting that reactive oxygen species are mediators linking mitochondrial dysfunction and genomic instability. Further, nuclear transfer protected genomes from telomere dysfunction and promoted cell survival by reconstitution with functional mitochondria. This work links mitochondrial dysfunction and genomic instability and may provide new therapeutic strategies to combat certain mitochondrial and aging-associated pathologies.  相似文献   

18.
19.
Cellular proliferation and telomerase activity in CHRF-288-11 cells   总被引:3,自引:0,他引:3  
Yang XY  Kimura M  Jeanclos E  Aviv A 《Life sciences》2000,66(16):1545-1555
Telomerase activity is detected in many immortalized cell lines. Recent studies suggest that terminal differentiation of some of these cell lines is associated with a reduction in telomerase activity. However, the question remains whether the reduction in telomerase activity results from terminal differentiation or from cessation of cellular proliferation. This was explored in the megakaryocytic cell line CHRF-288-11. Cells were treated with phorbol 12-myristate 13-acetate (PMA), which induces terminal differentiation of CHRF-288-11 cells, EGTA, serum depletion, and okadaic acid. All treatments resulted in cessation of proliferation. Except for okadaic acid, these treatments also induced inhibition of telomerase within 7 days. Restoring the original growth conditions of cells treated with PMA, EGTA and serum depletion resulted in the reversal of telomerase inhibition and an acceleration of proliferation. Apparent inhibition of telomerase was observed to follow the cessation of proliferation, whereas enhanced telomerase activity was noted to precede acceleration in proliferation. Thus, telomerase activity usually reflects the proliferative status rather than the differentiated status of CHRF-288-11 cells.  相似文献   

20.
端粒是真核细胞染色体末端的重复DNA序列 ,其生物学功能是防止染色体DNA降解、末端融合、非正常重组和染色体的缺失[1] .由于存在“末端复制问题” ,随着老化人体细胞端粒重复序列长度不断缩短 ,但在生殖细胞中由于端粒酶的存在 ,端粒序列并不缩短 .端粒酶是由蛋白质和RNA构成的核蛋白 ,是依赖RNA的DNA聚合酶 ,在DNA3’端合成端粒重复序列[2 ] .研究表明 ,在 85 %~ 95 %的人肿瘤细胞中可以检测到端粒酶的活性[3 ,4 ] ,而在正常体细胞中除生殖细胞和造血干细胞等极少数细胞中存在端粒酶活性外 ,均检测不到端粒酶活性 ,这…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号