首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 546 毫秒
1.
46,XY女性患者SRY基因启动子区域的突变分析   总被引:1,自引:0,他引:1  
大约15%的46,XY女性患者中发现SRY基因编码区突变,其他患者可能是SRY基因的调节区, 包括启动子区域发生了突变,或者其他相关基因发生突变所致。本文采用限制性酶切、PCR-SSCP及银染检测技术,对7例患者SRY基因的启动子区域进行了突变筛查, 结果未发现异常,提示这些患者的病因与SRY基因启动子区域本身无关,结合对患者SRY基因HMG基序DNA的突变分析结果,表明除SRY基因异常外还存在其他导致46,XY女性性反转综合征的遗传机制。 Abstract:Using restriction endonuelease digestion and PCR-SSCP with silver staining,we analyzed the promotor region of SRY gene in seven 46,XY femalcs.The results showed no abnormality,thus ruling out the mutations in the promotor region of the SRY gene as a possible cause of sex reversal in these XY females.In view with the absence of the mutations in the HMG regions of the SRY genes of several patients,it is suggested that SRY gene is not the only gene responsible for testicular development but is one of many hierarchical genes involved in a genetic cascade for sexual differentiation.  相似文献   

2.
六例性反转综合征患者的分子遗传学分析   总被引:2,自引:0,他引:2  
对六例性反转综合征患者(3例XX男性)(3例XY女性)用Y-特异性DNA探针进行了Southern印迹杂交分析,并用PCR技术扩增了SRY基因部分序列。结果表明,1例XX男性缺乏源于Y染色体的杂交信号,也无SRY基因;其余2例XX男性和3例XY女性都检测到Yp-DNA序列和SRY基因。这对进一步阐明性反转综合征的病因和SRY基因的作用机制具有重要意义。  相似文献   

3.
应用显微切割技术获得赤麂1号,Y1,Y2染色体,通过DOP-PCR增加模板DNA拷贝数,然后用人的性别决定基因(Sex-tetermininig Region of the Chromosome Y,SRY)中HMG框内设计1对引物,对DOP-PCR产物进行扩增,在雄性赤麂Y2染色体DOP-PCR产物中扩增出与人SRY基因同源的Sry基因片段,克隆,测序,首次在分子水平上证明赤麂Y2染色体是真正的Y染色体,同时对赤麂Syr基因进行了初步定位。  相似文献   

4.
人SOX9基因同时参与胚胎骨骼形成和睾丸发育调控.对一例多发畸形的早产女性胎儿进行SRY基因扩增和SOX9基因突变分析,发现其具有男性特异性SRY基因,且SOX9基因发生R178L(G→T)的突变,提示该病例为SOX9基因突变导致的广泛性先天发育不良合并常染色体男一女性性反转.该突变此前未见报道,这也是中国人群中首次报道致病性SOX9基因突变。  相似文献   

5.
睾丸决定因子基因(Testis-determining factor,TDF)位于Y染色体短臂上,它的表达产物诱导睾丸组织的发生。SRY基因(Sex-determining Region of the Y)位于Y染色体的性别决定区内,许多特征显示SRY就是TDF。我们选用与SRY基因相应的引物,用PCR技术对正常人男女各10例的基因组DNA进行扩增。将特异扩增的男性SRY基因片段重组到质粒PUC12中,得到含有中国人SRY基因片段的克隆,命名为PSY-1、PSY-2。用[~(32)p]标记重组质粒中的SRY基因片段作探针,与PCR结果进行Southern杂交,男性样品均显示特异杂交带,女性样品为阴性。用末端终止法测定克隆的SRY基因片段的全部核苷酸序列为299bp,含有SRY基因中高度保守及功能特异性区域的240bp,我们对此进行了讨论。  相似文献   

6.
小麂Sry基因的克隆和测序   总被引:5,自引:0,他引:5  
鲁晓瑄  张悦  单祥年 《遗传》2003,25(3):299-301
应用人的性别决定基因SRY(Sex-determining Region Y gene,SRY)中HMG框内的一对引物,对小麂细胞株的基因组DNA进行PCR扩增,得到雄性小麂细胞的220bp扩增产物,而在雌性小麂细胞中未发现扩增产物。将雄性小麂细胞的220bp扩增产物通过T-A互补法克隆到质粒pGEM-T 载体中,筛选阳性克隆进行DNA测序。测序结果表明小麂Sry基因保守序列与人的SRY基因保守区相同碱基的比值为152/184,达到82.6%。提示小麂Sry基因与人的SRY基因存在着较高的同源性,说明SRY基因在进化过程中高度保守。 Abstract:Using the primers from SRY gene——HMG Box for PCR amplification in genomic DNA of Muntiacus reevesi cell strains,a 220bp fragment was obtained in the male but not in the female.The 220bp fragment was cloned into the pGEM-T vector using T/A clone method.The identified positive clone was sequenced.The result shows that 82.6% nucleotides(152bp/184bp) are homologous between Muntiacus Sry and human SRY gene.It suggests that SRY is highly conserved during evolution.  相似文献   

7.
雄牛特异的SRY同源序列的扩增和分析   总被引:6,自引:0,他引:6  
利用人、兔、鼠SRY序列设计引物,应用PCR扩增牛的SRY序列,获得200bp的雄牛特异的扩增片段。克隆该扩增片段,获得重组质粒pCH21,进行序列分析,并与人、兔和鼠SRY的对应区域比较,具有高度同源性。用pCH21 DNA作探针与牛的基因组DNA酶切图谱杂交,显示了雄牛特异的I.7kb的杂交带。分析200bp的PCR扩增片段是牛的SRY基因片段。用同一对引物扩增人和山羊的DNA样品,也获得雄性特异的200bp的扩增片段。  相似文献   

8.
在哺乳动物中,Y染色体决定着雄性性别,这是由于在其短臂上存在一个编码睾丸决定因子 (TDF) 的基因。1990年,人们克隆了睾丸决定因子基因并命名为SRY。序列分析表明SRY基因中存在一个保守区,与染色体高迁移率组 (HMG) 蛋白质上的DNA结合结构域具有一定的相似性。基于HMG基序的保守性人们发现了一个新的基因家族Sox基因家族。凡是在HMG区域与SRY基因具有50%以上相似性的基因被称为Sox基因。Sox基因在早期胚胎发育过程中参与多种发育途径,具有重要的作用。参与诸如性别决定、骨组织的发育、血细胞生成过程、神经系统的发育、晶状体的发育等多种早期胚胎发育过程。 虎(Panthera tigris)作为世界上最濒危的兽类之一,东北虎(Panthera tigris altaica Temminck)是其中的一个亚种,被列为一类珍稀动物。本文对其发育基因家族—SOX基因进行了研究。 利用肌肉组织为材料制备基因组DNA, 应用特异于HMG-box区域的兼并引物, 扩增了东北虎的SOX基因。在扩增产物中发现一条220bp的扩增带。经过克隆与序列测定和同源性检索,发现5个基因片段(Fig.1&2)。其与人SRY基因的相似性分别为75%、56%、51%、67% 和48%;与小鼠Sry基因的相似性分别为73%、54%、57%、66% 和 48% (Table 1)。因此这5个DNA片段为东北虎的5个Sox基因片  相似文献   

9.
性别决定基因SRY的研究进展   总被引:1,自引:0,他引:1  
SRY基因是哺乳动物性别决定过程中的主宰基因,其表达产物SRY蛋白是一种DNA结合蛋白,该蛋白含有一个HMG盒,能够以序列特异性结合到DNA双螺旋链的一侧,起到转录因子的作用。调节或协同下游基因如SOX9、AMH等基因的表达,使胚胎发育向雄性方向发展。  相似文献   

10.
目的:利用结合单酶切位点的融合PCR技术对癫痫相关基因SCN1A进行定点突变。方法:首先设计两对引物PF1/PR1和PF2/PR2,PF1和PR2均位于突变位点最近的单酶切位点处,而突变位点设计在第一对反向引物(PR1)和第二对正向引物上(PF2)。通过重叠延伸法两次PCR扩增:第一次用PF1/PR1和PF2/PR2分开扩增,以扩增产物作模板,PF1/PR2作引物进行融合PCR,得到的扩增产物即含有所需要的突变位点,最后将扩增片段克隆入pMD18-T载体,经测序筛选阳性克隆。结果:DNA测序表明SCN1A基因所编码的第946位密码子由精氨酸(Arg)突变为组氨酸(His),再通过酶切和连接反应将重组质粒上的突变片段替换SCN1A表达质粒上的对应片段,成功构建了SCN1A突变载体。结论:与现在常用的长距离PCR定点诱导突变相比较,结合单酶切位点的融合PCR定点突变技术具备扩增距离短的优点,大大降低了自发突变的概率,适合于大肠杆菌中易自发突变的较大载体的定点诱变。  相似文献   

11.
Mutational analysis of SRY: nonsense and missense mutations in XY sex reversal   总被引:15,自引:0,他引:15  
Summary XY females (n=17) were analysed for mutations in SRY (sex-determining region Y gene), a gene that has recently been equated with the testis determining factor (TDF). SRY sequences were amplified by the polymerase chain reaction (PCR) and analysed by both the single strand conformational polymorphism assay (SSCP) and DNA sequencing. The DNA from two individuals gave altered SSCP patterns; only these two individuals showed any DNA sequence variation. In both cases, a single base change was found, one altering a tryptophan codon to a stop codon, the other causing a glycine to arginine amino acid substitution. These substitutions lie in the high mobility group (HMG)-related box of the SRY protein, a potential DNA-binding domain. The corresponding regions of DNA from the father of one individual and the paternal uncle of the other, were sequenced and found to be normal. Thus, in both cases, sex reversal is associated with de novo mutations in SRY. Combining this data with two previously published reports, a total of 40 XY females have now been analysed for mutations in SRY. The number of de novo mutations in SRY is now doubled to four, adding further strength to the argument that SRY is TDF.  相似文献   

12.
The Y chromosome gene SRY (sex-determining region, Y gene) has been equated with the mammalian testis-determining factor. The SRY gene of five subjects with 46,XY complete gonadal dysgenesis (46,XY karyotype, completely female external genitalia, normal Müllerian ducts, and streak gonads) was evaluated for possible mutations in the coding region by using both single-strand conformation polymorphism (SSCP) assay and DNA sequencing. Mutations were identified in three subjects, of which two gave altered SSCP patterns. Two of them were point mutations causing amino acid substitutions, and the third was a single-base deletion causing a frameshift. All three mutations caused alterations in the putative DNA-binding region of the SRY protein. Genomic DNA was obtained from the fathers of two of the three mutant patients: one mutation was demonstrated to be de novo, and the other was inherited. The presence of SRY mutations in three of five patients suggests that the frequency of SRY mutations in XY females is higher than current estimates.  相似文献   

13.
We describe a novel double nucleotide substitution in the SRY gene of a 46,XY female with gonadal dysgenesis or Swyer syndrome. The SRY sequence was analysed by both the single-strand conformational polymorphism assay and direct DNA sequencing of products from the polymerase chain reaction. A double nucleotide substitution was identified at codon 18 of the conserved HMG box motif, causing an arginine to asparagine amino-acid substitution. The altered residue is situated in the high mobility group (HMG)-related box of the SRY protein, a potential DNA-binding domain. Since the mutation abolishes one HhaI recognition site, the results were confirmed by HhaI restriction mapping. No other mutations were found in the remaining regions of the gene. The corresponding DNA region from the patient’s brother was analysed and found to be normal. We conclude that the SRY mutation in the reported XY female occurred de novo and is associated with sex reversal. Received: 16 December 1996 / Accepted: 5 May 1997  相似文献   

14.
Mutations in the sex-determining region of the Y chromosome (the SRY gene) have been reported in low frequency in patients with 46,XY gonadal dysgenesis. We investigated 21 Brazilian 46,XY sex-reversed patients, who presented either complete or partial gonadal dysgenesis or embryonic testicular regression syndrome. Using Southern blotting, polymerase chain reaction, denaturing gradient gel electrophoresis and direct sequencing, we analyzed deletions and point mutations in the SRY gene. We found a missense mutation at codon 18 upstream of the 5′ border of the HMG box of the SRY gene in one patient with partial gonadal dysgenesis. This variant sequence was also found in DNA obtained from blood and sperm cells of his father and in blood cells of his normal brother. The S18N mutation was not found in 50 normal males, ruling out the possibility of a common polymorphism. We identified a novel familial missense mutation (S18N) in the 5’ non-HMG box of the SRY gene in 1 of 21 patients with 46,XY sex reversal. Received: 6 May 1997 / Accepted: 2 October 1997  相似文献   

15.
中华鳖4个Sox基因保守区的序列分析   总被引:14,自引:2,他引:12  
采用PCR技术,扩增和克隆了中华鳖Sox基因(TSSox)。经DNA序列分析显示,Sox基因在系统进化上十分保守,其中TSSox4与鸟类LF4基因编码的氨基酸序列完全相同、与人类SOX4和Sox4编码的序列仅一个氨基酸的差异;TSSox5与鸟类的LF5基因的编码也仅一个氨基酸发生了改变;TSSox2与海龟的TSox2相似性最高。4条TSSox序列中,TSSox与人SRY基因序列相似性最高,达75%;序列上的相似性可能暗示了它们在功能上的保守性。  相似文献   

16.
Recently, the gene for the determination of maleness has been identified in the sex-determining region on the short arm of the Y chromosome (SRY) between the Y-chromosomal pseudoautosomal boundary (PABY) and the ZFY gene locus. Experiments with transgenic mice confirmed that SRY is a part of the testis-determining factor (TDF). We describe a sporadic case of a patient with intersexual genitalia and the histological finding of ovotestes in the gonad, which resembles the mixed type of gonadal tissue without primordial follicle structures. The karyotype of the patient was 46,XY. By PCR amplification, we tested for the presence of PABY, SRY, and ZFY by using DNA isolated from peripheral blood leukocytes and for the presence of SRY by using DNA obtained from histological gonadal slices. The SRY products of both DNA preparations were further analyzed by direct sequencing. All three parts of the sex-determining region of the Y chromosome could be amplified from leukocytic DNA. The patient's and the father's SRY sequences were identical with the published sequence. In the SRY PCR product of gonadal DNA, the wild-type and two point mutations were present in the patient's sequence, simulating a heterozygous state of a Y-chromosomal gene: one of the mutations was silent, while the other encoded for a nonconservative amino acid substitution from leucine to histidine. Subcloning procedures showed that the two point mutations always occurred together. The origin of the patient's intersexuality is a postzygotic mutation of the SRY occurring in part of the gonadal tissue. This event caused the loss of the testis-determining function in affected cells.  相似文献   

17.
True hermaphroditism (TH) is an unusual form of sex reversal, characterized by the development of testicular and ovarian tissue in the same subject. Approximately 60% of the patients have a 46,XX karyotype, 33% are mosaics with a second cell line containing a Y chromosome, while the remaining 7% are 46,XY. Molecular analyses have demonstrated that SRY is present in only 10% of TH with a 46,XX karyotype; therefore, in the remaining 90%, mutations at unknown X-linked or autosomal sex determining loci have been proposed as factors responsible for testicular development. True hermaphroditism presents considerable genetic heterogeneity with several molecular anomalies leading to the dual gonadal development as SRY point mutations or SRY hidden gonadal mosaicism. In order to identify genetic defects associated with subjects with the disease, we performed molecular analyses of the SRY gene in DNA from blood leukocytes and gonadal tissue in 12 true hermaphrodites with different karyotypes. Our results using PCR and FISH analyses reveal the presence of hidden mosaicism for SRY or other Y sequences in some patients with XX true hermaphroditism and confirms that mosaicism for SRY limited to the gonads is an alternative mechanism for testicular development in 46,XX true hermaphrodites.  相似文献   

18.
Despite the identification of an increasing number of genes involved in sex determination and differentiation, no cause can be attributed to most cases of 46, XY gonadal dysgenesis, approximately 20% of 46, XX males and the majority of subjects with 46, XX true hermaphroditism. Perhaps the most interesting candidate for involvement in sexual development is SOX3, which belongs to the same family of proteins (SOX) as SRY and SOX9, both of which are involved in testis differentiation. As SOX3 is the most likely evolutionary precursor to SRY, it has been proposed that it has retained a role in testis differentiation. Therefore, we screened the coding region and the 5 and 3 flanking region of the SOX3 gene for mutations by means of single-stranded conformation polymorphism and heteroduplex analysis in eight subjects with 46, XX sex reversal (SRY negative) and 25 subjects with 46, XY gonadal dysgenesis. Although no mutations were identified, a nucleotide polymorphism (1056C/T) and a unique synonymous nucleotide change (1182A/C) were detected in a subject with 46, XY gonadal dysgenesis. The single nucleotide polymorphism had a heterozygosity rate of 5.1% (in a control population) and may prove useful for future X-inactivation studies. The absence of SOX3 mutations in these patients suggests that SOX3 is not a cause of abnormal male sexual development and might not be involved in testis differentiation.An erratum to this article can be found at  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号