首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Li G  Hu W  Qin R  Jin H  Tan G  Zhu L  He G 《Genetica》2008,134(2):169-180
Wild rice is a valuable resource for the genetic improvement of cultivated rice (Oryza sativa L., AA genome). Molecular markers are important tools for monitoring gene introgression from wild rice into cultivated rice. In this study, Simple sequence repeat (SSR) markers were used to analyze interspecific hybrids of O. sativa-O. officinalis (CC genome), the backcrossing progenies and the parent plants. Results showed that most of the SSR primers (335 out of 396, 84.6%) developed in cultivated rice successfully amplified products from DNA samples of wild rice O. officinalis. The polymorphism ratio of SSR bands between O. sativa and O. officinalis was as high as 93.9%, indicating differences between the two species with respect to SSRs. When the SSR markers were applied in the interspecific hybrids, only a portion of SSR primers amplified O. officinalis-specific bands in the F(1) hybrid (52.5%), BC(1) (52.5%), and MAALs (37.0%); a number of the bands disappeared. Of the 124 SSR loci that detected officinalis-specific bands in MAAL plants, 96 (77.4%) showed synteny between the A and C-genomes, and 20 (16.1%) showed duplication in the C-genome. Sequencing analysis revealed that indels, substitution and duplication contribute to the diversity of SSR loci between the genomes of O. sativa and O. officinalis.  相似文献   

2.
Cultivated rice (Oryza sativa) is an AA genome Oryza species that was most likely domesticated from wild populations of O. rufipogon in Asia. O. rufipogon and O. meridionalis are the only AA genome species found within Australia and occur as widespread populations across northern Australia. The chloroplast genome sequence of O. rufipogon from Asia and Australia and O. meridionalis and O. australiensis (an Australian member of the genus very distant from O. sativa) was obtained by massively parallel sequencing and compared with the chloroplast genome sequence of domesticated O. sativa. Oryza australiensis differed in more than 850 sites single nucleotide polymorphism or indel from each of the other samples. The other wild rice species had only around 100 differences relative to cultivated rice. The chloroplast genomes of Australian O. rufipogon and O. meridionalis were closely related with only 32 differences. The Asian O. rufipogon chloroplast genome (with only 68 differences) was closer to O. sativa than the Australian taxa (both with more than 100 differences). The chloroplast sequences emphasize the genetic distinctness of the Australian populations and their potential as a source of novel rice germplasm. The Australian O. rufipogon may be a perennial form of O. meridionalis.  相似文献   

3.
Xiong ZY  Tan GX  He GY  He GC  Song YC 《Cell research》2006,16(3):260-266
The genomic structures of Oryza sativa (A genome) and O. meyeriana (G genome) were comparatively studied using bicolor genomic in situ hybridization (GISH). GISH was clearly able to discriminate between the chromosomes of O. sativa and O. meyeriana in the interspecific F1 hybrids without blocking DNA, and co-hybridization was hardly detected. The average mitotic chromosome length of O. meyeriana was found to be 1.69 times that of O. sativa. A comparison of 4,6-diamidino-2-phenylindole staining showed that the chromosomes of O. meyeriana were more extensively labelled, suggesting that the G genome is amplified with more repetitive sequences than the A genome. In interphase nuclei, 9-12 chromocenters were normally detected and nearly all the chromocenters constituted the G genome-specific DNA. More and larger chromocenters formed by chromatin compaction corresponding to the G genome were detected in the hybrid compared with its parents. During pachytene of the F1 hybrid, most chromosomes of A and G did not synapse each other except for 1-2 chromosomes paired at the end of their arms. At meiotic metaphase I, three types of chromosomal associations, i.e.O, sativa-O, sativa (A-A), O. sativa-O, meyeriana (A-G) and O. meyeriana-O, meyeriana (G-G), were observed in the F1 hybrid. The A-G chromosome pairing configurations included bivalents and trivalents. The results provided a foundation toward studying genome organization and evolution of O. meyeriana.  相似文献   

4.
Oryza rufipogon Griff. is a wild progenitor of the Asian cultivated rice Oryza sativa. To better understand the genomic diversity of the wild rice, high-quality reference genomes of O. rufipogon populations are needed, which also facilitate utilization of the wild genetic resources in rice breeding. In this study, we generated a chromosome-level genome assembly of O. rufipogon using a combination of short-read sequencing, single-molecule sequencing, BioNano and Hi-C platforms. The genome sequence(399.8 Mb) was assembled into 46 scaffolds on the 12 chromosomes, with contig N50 and scaffold N50 of 13.2 Mb and 20.3 Mb,respectively. The genome contains 36,520 protein-coding genes, and 49.37% of the genome consists of repetitive elements. The genome has strong synteny with those of the O. sativa subspecies indica and japonica, but containing some large structural variations. Evolutionary analysis unveiled the polyphyletic origins of O. sativa, in which the japonica and indica genome formations involved different divergent O. rufipogon(including O. nivara) lineages, accompanied by introgression of genomic regions between japonica and indica. This high-quality reference genome provides insight on the genome evolution of the wild rice and the origins of the O. sativa subspecies, and valuable information for basic research and rice breeding.  相似文献   

5.
云南野生稻叶茎根组织结构特性的比较研究   总被引:1,自引:0,他引:1  
采用徒手切片法对云南3种野生稻和栽培稻的叶片、茎秆及根的组织结构进行比较研究,以明确野生稻的内部结构,为进一步揭示其结构与云南野生稻的生长势旺盛、营养吸收能力强、抗某些病虫害能力强的关系奠定基础。结果表明,(1)云南野生稻与栽培稻叶片主脉、茎秆及根的组织结构差异显著,其中景洪疣粒野生稻、景洪药用野生稻与栽培稻的差异最明显。(2)在叶主脉结构中,景洪疣粒野生稻无气腔结构,维管束数量少、面积小;景洪药用野生稻、3个普通野生稻材料存在多个维管束和气腔结构,维管束、束内导管直径及气腔面积较栽培稻大,而栽培稻中的气腔均为2个。(3)在茎秆结构方面,景洪疣粒野生稻茎秆最小,维管束数量最少,其茎壁内的维管束排列方式与栽培稻不同;景洪药用野生稻和普通野生稻茎秆及茎壁较栽培稻粗厚,维管束数量也较栽培稻多,普通野生稻的茎壁中有通气组织。(4)在根的组织结构中,3种野生稻的导管数量较多,导管直径及中柱面积较栽培稻大,外皮层出现了具有凯氏带功能的凯氏点等。  相似文献   

6.
野生稻基因组随机扩增多态性DNA(RAPD)分析   总被引:10,自引:0,他引:10  
用18个随机引物对2份栽培稻、12份包含有六个基因组型的野生稻DNA进行了扩增,共获得147个多态性DNA片断,把这些多态性DNA片断作为遗传位点用UPGMA法计算出各材料间的遗传相似性系数,并作了聚类分析.主要结果如下:1普通野生稻同栽培稻的亲缘关系很近,其中江永普通野生稻更接近于粳稻.2.CCDD组的Oryzalatifolia和EE组的O.australiensis遗传多态性相似。3.B、C、D、E组的遗传多态性相似,组成一个复合体,此复合体与A组的遗传多态性也相似,而F组则相距较远.4.O.mcyeriana和Rhynchofyzasabulata尚未确定组型,RAPD测定结果表明,前者与其它组型的种亲缘关系较远,后者则与AC复合体的种较近.  相似文献   

7.
着丝粒在真核生物有丝分裂和减数分裂染色体正常的分离和传递中起着重要的作用。通过构建5个稻属二倍体野生种的基因组BAC文库, 采用菌落杂交和FISH技术, 筛选和鉴定了各染色体组着丝粒克隆, 并且分析了这些克隆在不同基因组间的共杂交情况, 结果表明: (1) C染色体组的野生种O. officinalis 和F染色体组的野生种O. brachyantha具有各自着丝粒特异的卫星DNA序列, 并且O. brachyantha着丝粒还具有特异的逆转座子序列; (2) A、B和E染色体组的野生稻O. glaberrima、O. punctata和O. australiensis着丝粒区域都含有与栽培稻着丝粒重复序列CentO和CRR同源的序列; (3) C染色体组野生稻O. officinalis的2条体细胞染色体着丝粒具有CentO的同源序列, 同时也发现其所有着丝粒区域都包含栽培稻CRR的同源序列。这些结果对克隆稻属不同染色体组的着丝粒序列、研究不同染色体组间着丝粒的进化关系和稻属不同着丝粒DNA序列与功能之间的关系均具有重要意义。  相似文献   

8.
Previous studies based on morphological and molecular markers indicated that there are two cultivated and five wild rice species within the Oryza genus with the AA genome. In the cultivated rice species, Oryza sativa, a retroposon named p-SINE1 has been identified. Some of the p-SINE1 members characterized previously showed interspecific insertion polymorphisms in the species with the AA genome. In this study, we identified new p-SINE1 members showing interspecific insertion polymorphisms from representative strains of four wild rice species with the AA genome: O. barthii, O. glumaepatula, O. longistaminata, and O. meridionalis. Some of these members were present only in strains of one species, whereas the others were present in strains of two or more species. The p-SINE1 insertion patterns in the strains of the Asian and African cultivated rice species O. sativa and O. glaberrima were very similar to those of the Asian and African wild rice species O. rufipogon and O. barthii, respectively. This is consistent with the previous hypothesis that O. sativa and O. glaberrima are derived from specific wild rice species. Phylogenetic analysis based on the p-SINE1 insertion patterns showed that the strains of each of the five wild rice species formed a cluster. The strains of O. longistaminata appear to be distantly related to those of O. meridionalis. The strains of these two species appear to be distantly related to those of three other species, O. rufipogon, O. barthii and O. glumaepatula. The latter three species are closely related to one another with O. barthii and O. glumaepatula being most closely related. A phylogenetic tree including a hypothetical ancestor with all loci empty for p-SINE1 insertion showed that the strains of O. longistaminata are related most closely to the hypothetical ancestor. This indicates that O. longistaminata and O. meridionalis diverged early on, whereas the other species diverged relatively recently, and suggests that the Oryza genus with AA genome might have originated in Africa, rather than in Asia.  相似文献   

9.
Endogenous, 14 kb double-stranded RNAs (dsRNAs) have been found in two ecospecies of cultivated rice (temperate japonica rice and tropical japonica rice, Oryza sativa L.) and in wild rice (O. rufipogon, an ancestor of O. sativa). A comparison of the nucleotide and deduced amino acid sequences of the core regions of the RNA-dependent RNA polymerase domains found in these three dsRNAs suggested that these dsRNAs probably evolved independently within each host plant from a common ancestor. These dsRNAs were introduced into F1 hybrids by crossing cultivated rice and wild rice. Unusual cytoplasmic inheritance of these dsRNAs was observed in some F1 hybrids; the evolutionarily related dsRNAs were incompatible for each other, and the resident dsRNA of an egg cell from cultivated rice was excluded by the incoming dsRNA of a pollen cell from wild rice. Coexisting dsRNAs in the F1 hybrids segregated away from each other in the F2 plants. However, the total amount of these dsRNAs in the host cells remained constant (ca. 100 copies/cell). The stringent regulation of the dsRNA copy number may be responsible for their unusual inheritance.  相似文献   

10.
段世华  李绍清  李阳生  熊云  朱英国 《遗传》2007,29(4):455-461
水稻线粒体基因组嵌合基因orf79 和 orfH79分别被认为与BT-型和HL-型水稻CMS有关, 两者具有98%的同源性, 并且其DNA序列只存在4核苷酸的差异。对于这两个嵌合基因, 前者来源于栽培稻(Oryza. sativa L.), 而后者则来源于普通野生稻(O. rufipogon Griff.)。这意味着orf79/ orfH79可能在广泛分布于稻属AA基因组中。为了调查orf79/ orfH79在稻属物种中的分布和变异, 190份栽培稻品系[包括156份亚洲栽培稻(O. sativa var. landrace)和34份非洲栽培稻(O. glaberrima)]以及104份稻属AA基因组野生稻品系(包括O. rufipogon、O.nivara、O. glumaepatula、O. barthii、O. longistaminata和O. meridionalis 6个种), 被用于PCR扩增检测。31份具有控制粤泰A和笹锦A的特异片段的稻属AA基因组水稻品系被检测出。所有特异片段均被回收并测序, 基于DNA 序列的聚类结果显示31份水稻材料被分成了两组, 分别代表为BT-型和HL-型水稻不育细胞质组群。结果也进一步表明: HL-型水稻CMS胞质主要分布于一年生的O. nivara中; BT-型水稻CMS胞质可能来源于栽培稻变种或多年生野生稻O. rufipogon。  相似文献   

11.
Oryza meyerlana Baill (GG genome) Is a precious germplaem in the tertiary gene pool of cultivated rice (AA genome), and possesses important traits such as resistance and tolerance to biotic and abiotic stress. However, interspecific crossability barrier, a critical bottleneck restricting genes transfer from O. meyeriana to cultivars has led to no hybrids through conventional reproduction. Therefore, the reasons undedying incrossability were investigated in the present report. The results showed that: (ⅰ) at 3-7 d after pollination (DAP), many hybdd embryos degenerated at the earlier globular-shaped stage, and could not develop into the later pear-shaped stage. Meanwhile, free endosperm nuclei started to degenerate at 1 DAP, and cellular endosperm could not form st 3 DAP, leading to nutrition starvation for young embryo development; (ⅱ) st 11-13 DAP, almost all hybrid ovaries aborted. Even though 72.22% of hybrid young embryos were produced in the interspecific hybridization between O. sativa and O. meyeriana, young embryos were not able to further develop into hybrid plantlets via culturing in vitro. The main reason for the incrossability was hybrid embryo inviability, presenting as embryo development stagnation and degeneration since 3 DAP. Some possible approaches to overcome the crossability banders in the interspecific hybridization between O. sativa and O. meyeriana are discussed.  相似文献   

12.
野生稻和栽培稻的随机多态DNA(RAPD)分析   总被引:9,自引:0,他引:9  
应用 RAPD方法对药用野生稻、普通野生稻、粳稻和籼稻进行基因组多态性分析。 1 2个随机引物共扩增出 1 3 2条 RAPD带 ,片段大小在 3 0 0~ 3 5 0 0 bp之间 ,其中有 1 0 6条表现出多态性 ,占总扩增片段的86.4%。根据遗传距离分析 ,用 UPGMA法构建了聚类树状图 ,结果表明 ,普通野生稻的遗传特性比药用野生稻更接近于栽培稻。  相似文献   

13.
本文应用狭缝印渍杂交方法,把水稻基因组总DNA和含水稻中度重复顺序片段的质粒(pRRD9)DNA分别转移到尼龙膜上形成狭缝印渍、然后用~(32)P标记的 pRRD9插入片段进行杂交、根据各狭缝印渍的放射性强度,测定水稻(Oryza)一些栽培种和野生种基因组中重复DNA顺序的拷贝数,并就拷贝数与水稻进化关系及基因组型的联系进行讨论.  相似文献   

14.
The wild rice species Oryza rufipogon with wide intraspecific variation is thought to be the progenitor of the cultivated rice species Oryza sativa with two ecotypes, japonica and indica. To determine the origin of cultivated rice, subfamily members of the rice retroposon p-SINE1, which show insertion polymorphism in the O. sativa -O. rufipogon population, were identified and used to "bar code" each of 101 cultivated and wild rice strains based on the presence or absence of the p-SINE1 members at the respective loci. A phylogenetic tree constructed based on the bar codes given to the rice strains showed that O. sativa strains were classified into two groups corresponding to japonica and indica, whereas O. rufipogon strains were in four groups, in which annual O. rufipogon strains formed a single group, differing from the perennial O. rufipogon strains of the other three groups. Japonica strains were closely related to the O. rufipogon perennial strains of one group, and the indica strains were closely related to the O. rufipogon annual strains, indicating that O. sativa has been derived polyphyletically from O. rufipogon. The subfamily members of p-SINE1 constitute a powerful tool for studying the classification and relationship of rice strains, even when one has limited knowledge of morphology, taxonomy, physiology, and biochemistry of rice strains.  相似文献   

15.
Song ZP  Lu BR  Wang B  Chen JK 《Annals of botany》2004,93(3):311-316
BACKGROUND AND AIMS: Introgression of crop genes into populations of wild relatives has important implications for germplasm conservation as well as for the persistence of novel transgenes in wild populations. Studies of hybrid fitness can be used to evaluate the potential for introgression to occur following episodes of interspecific hybridization. METHODS: This study estimated relative fitness of interspecific hybrids through performance comparison of F(1) hybrids with their parental species, a cultivated rice (Oryza sativa) Minghui-63 and perennial common wild rice (O. rufipogon) under the cultivation conditions. KEY RESULTS: Compared with their parents, the hybrids had the lowest values of seedling survival ability, pollen viability and seed production; intermediate values of seed germination, spikelet production and flag leaf areas; and the highest values of plant height, number of tillers and panicles. The hybrids performed poorly at the stage of sexual reproduction, although they had a slightly higher hybrid vigour at the vegetative growth stage and better tillering ability than their wild parent. There were no significant differences in composite fitness across the whole life-history between the hybrids and their wild parental species. CONCLUSIONS: Rice genes, including transgenes, might persist in wild rice populations through vegetative and sexual reproduction. Further studies are needed to examine whether the extent of gene flow from rice is sufficiently significant to influence genetic diversity in wild populations of O. rufipogon, a species that has become endangered in some regions of south-east Asia.  相似文献   

16.
中国野生稻遗传资源的保护及其在育种中的利用   总被引:15,自引:0,他引:15  
我国有三种野生稻,即普通野生稻(Oryza rufipogon)、药用野生稻(O.officinalis)和瘤粒野生稻(O.meyeriana)。这三种野生稻均被列为国家二级保护植物(渐危种)。调查结果表明,野生稻由于其自然群落大量丧失而濒危,濒危程度为普通野生稻>药用野生稻>瘤粒野生稻。造成濒危的主要原因是人为的破坏活动。人类的经济活动导致了野生稻生境丧失、生境质量不断恶化、栖息地越来越少;人类的活动也导致了外来种的入侵。目前,对野生稻的保护措施主要有就地保护(原地保护或原位保护)和迁地保护(易地保护或异位保护)。易地保护包括以种子保存的种质厍、以种茎保存的种质圃和以器官培养物作为材料的超低温保存。野生稻具有许多优良特性,如特强的耐寒性、高的抗病虫性、优质蛋白质含量高、功能叶片耐衰老的特异性、特强的再生性、良好的繁茂性及生长优势等等,这些优良特性已被广泛用于水稻常规育种和杂交育种中,并取得了巨大的社会效益和经济效益。有关野生稻生物技术方面的研究,如花药培养、原生质培养、体细胞杂交和基因工程等方面已取得了较大的进展。野生稻将在水稻育种中发挥越来越重要的作用。  相似文献   

17.
对一个药用野生稻(Oryza officinalis Wall ex Watt,基因组型CC)异源单体附加系(monosomic alien addition line,MAAL)及其回交后代进行了分析,应用分子标记技术确定了该异源单体附加系所附加的染色体是一条嵌合的7号染色体,药用野生稻贡献了其长臂部分,而短臂和着丝粒则来源于栽培稻。将该植株与栽培稻亲本回交,得到109株回交后代,考察了回交群体的主要农艺性状并进行了分子标记分析,发现野生稻染色体片段的渗入影响了回交后代的株高、千粒重、结实率、结实密度、叶宽等农艺性状,而且这些性状之间正相关度很大。  相似文献   

18.
云南野生稻不同染色体组型和外植体材料的离体培养研究   总被引:3,自引:0,他引:3  
云南野生稻不同外植体愈伤组织诱导能力差别较大。花粉培养中愈伤组织诱导率差异在0%~11.8%之间,用成熟胚诱导愈伤组织,其诱导率在18.0%~35.2%之间,茎叶培养则在12.0%~25.0%之间。云南野生稻不同外植体诱导的愈伤组织再分化为绿苗的分化率在8.3%~100.0%之间。疣粒稻组培特性最好,东乡普通野生稻和景洪普通野生稻次之,药用稻最难组培。本文建立了疣粒、东乡、景洪普野3种野生稻的离体无性系,为长期保存云南野生稻资源奠定了基础。  相似文献   

19.
Two hundred and seventy-five accessions of cultivated Asian rice and 44 accessions of AA genome Oryza species were classified into 8 chloroplast (cp) genome types (A-H) based on insertion-deletion events at 3 regions (8K, 57K, and 76K) of the cp genome. The ancestral cp genome type was determined according to the frequency of occurrence in Oryza species and the likely evolution of the variable 57K region of the cp genome. When 2 nucleotide substitutions (AA or TT) were taken into account, these 8 cp types were subdivided into 11 cp types. Most indica cultivars had 1 of 3 cp genome types that were also identified in the wild relatives of rice, O. nivara and O. rufipogon, suggesting that the 3 indica cp types had evolved from distinct gene pools of the O. rufipogon - O. nivara complex. The majority of japonica cultivars had 1 of 3 different cp genome types. One of these 3 was identified in O. rufipogon, suggesting that at least 1 japonica type is derived from O. rufipogon with the same cp genome type. These results provide evidence to support a polyphyletic origin of cultivated Asian rice from at least 4 principal lineages in the O. rufipogon - O. nivara complex.  相似文献   

20.
水稻白叶枯病是水稻生产上的主要细菌病害之一。从野生稻中发掘优异的水稻白叶枯病抗性材料,可以拓宽栽培稻抗白叶枯病遗传基础。经过温室接菌鉴定和PCR标记分析,对云南野生稻进行Xa21基因的检测鉴定。温室接菌鉴定表明,云南野生稻对广谱致病小种PX099及云南强致病菌Y8具有较好的抗性能力,特别是疣粒野生稻对致病菌株达到免疫程度;PCR标记分析表明,云南野生稻不含有Xa21基因,但含有与Xa21基因某些区域同源的片段。本研究结果为寻找新的抗源材料及快速发掘利用云南野生稻中的抗白叶枯病基因提供理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号