首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of 20 essential oil constituents on Aspergillus flavus growth and aflatoxin production was tested at the level of 1000 ppm. Some of the tested oils exhibited inhibitory effects on fungal growth and toxin formation. Five oils, namely geraniol, nerol and citronellol (aliphatic oils), cinnamaldehyde (aromatic aldehyde) and thymol (phenolic ketone), completely suppressed growth and aflatoxin synthesis. Trials for determining the minimum inhibitory concentration (MIC) of these oils revealed that geraniol, nerol and citronellol were effective at 500 ppm, while thymol and cinnamaldehyde were highly effective at doses as low as 250 and 200 ppm, respectively. It was observed that citral, citronellal and eugenol prevented fungal growth and toxin formation for up to 8 d. However, after 15 d of incubation, toxin production was greater than the controls.  相似文献   

2.
Anti-Candida potential of six terpenoids were evaluated in this study against various isolates of Candida albicans (n = 39) and non-C. albicans (n = 9) that are differentially susceptible to fluconazole. All the six terpenoids tested, showed excellent activity and were equally effective against isolates of Candida sps., tested in this study. Linalool and citral were the most effective ones, inhibiting all the isolates at ≤0.064% (v/v). Five among the six terpenoids tested were fungicidal. Time dependent kill curve assay showed that MFCs of linalool and eugenol were highly toxic to C. albicans, killing 99.9% inoculum within seven min of exposure, while that of citronellal, linalyl acetate and citral required 15 min, 1 h and 2 h, respectively. FIC index values (Linalool - 0.140, benzyl benzoate - 0.156, eugenol - 0.265, citral - 0.281 and 0.312 for linalyl acetate and citronellal) and isobologram obtained by checker board assay showed that all the six terpenoids tested exhibit excellent synergistic activity with fluconazole against a fluconazole resistant strain of C. albicans. Terpenoids tested arrested C. albicans cells at different phases of the cell cycle i.e. linalool and LA at G1, citral and citronellal at S phase and benzyl benzoate at G2-M phase and induced apoptosis. Linalool, citral, citronellal and benzyl benzoate caused more than 50% inhibition of germ tube induction at 0.008%, while eugenol and LA required 0.032 and 0.016% (v/v) concentrations, respectively. MICs of all the terpenoids for the C. albicans growth were non toxic to HeLa cells. Terpenoids tested exhibited excellent activity against C. albicans yeast and hyphal form growth at the concentrations that are non toxic to HeLa cells. Terpenoids tested in this study may find use in antifungal chemotherapy, not only as antifungal agents but also as synergistic agents along with conventional drugs like fluconazole.  相似文献   

3.
Khan MS  Ahmad I 《Phytomedicine》2011,19(1):48-55
This study was aimed to evaluate effects of certain essential oils namely Cinnamomum verum, Syzygium aromaticum, Cymbopogon citratus, Cymbopogon martini and their major components cinnamaldehyde, eugenol, citral and geraniol respectively, on growth, hyphal ultrastructure and virulence factors of Aspergillus fumigatus and Trichophyton rubrum. The antifungal activity of essential oils and their major constituents was in the order of cinnamaldehyde>eugenol>geraniol=C. verum>citral>S. aromaticum>C. citratus>C. martini, both in liquid and solid media against T. rubrum and A. fumigatus. Based on promising antifungal activity of eugenol and cinnamaldehyde, these oils were further tested for their inhibitory activity against ungerminated and germinated conidia in test fungi. Cinnamaldehyde was found to be more active than eugenol. To assess the possible mode of action of cinnamaldehyde, electron microscopic studies were conducted. The observations revealed multiple sites of action of cinnamaldehyde mainly on cell membranes and endomembranous structures of the fungal cell. Further, test oils were also tested for their anti-virulence activity. More than 70% reduction in elastase activity was recorded in A. fumigatus by the oils of C. verum, C. martini, eugenol, cinnamaldehyde and geraniol. Similar reduction in keratinase activity in A. niger was recorded for the oils of C. martini and geraniol. Maximum reduction (96.56%) in elastase activity was produced by cinnamaldehyde whereas; geraniol caused maximum inhibition (97.31%) of keratinase activity. Our findings highlight anti-elastase and anti-keratinase activity of above mentioned essential oils as a novel property to be exploited in controlling invasive and superficial mycoses.  相似文献   

4.
黑曲霉是一类极易通过饲料、食品、粮油霉变而具致病性的有害真菌。与物理和化学方法抑制黑曲霉生长相比,生物抑菌剂抗黑曲霉生长具有药效久、无抗药性并安全健康的优点。本实验采用天然肉桂醛、柠檬醛作为抑菌剂,以正常生长的黑曲霉为对照,分别采用牛津杯法、气体扩散法比较对黑曲霉生长效果的影响。结果表明,柠檬醛作用所形成的抑菌圈显著大于肉桂醛作用所形成的抑菌圈,且在同一浓度下柠檬醛对菌丝体形态和孢子囊形态的抑制比肉桂醛显著,而气体扩散法抗黑曲霉效果优于牛津杯法。  相似文献   

5.
A bacterium capable of utilizing citronellal or citral as the sole source of carbon and energy has been isolated from soil by the enrichment culture technique. It metabolizes citronellal to citronellic acid (65%), citronellol (0.6%), dihydrocitronellol (0.6%), menthol (0.75%), and 3,7-dimethyl-1,7-octane diol (1.7%). The metabolites of citral were geranic acid (62%), 6-methyl-5-heptanoic acid (0.5%), 3-methyl-2-butenoic acid (1%), and 1-hydroxy-3, 7-dimethyl-6-octen-2-one (0.75%).  相似文献   

6.
Ochratoxin A (OTA) is a mycotoxin which is a common contaminant in grains during storage. Aspergillus ochraceus is the most common producer of OTA. Essential oils play a crucial role as a biocontrol in the reduction of fungal contamination. Essential oils namely natural cinnamaldehyde, cinnamon oil, synthetic cinnamaldehyde, Litsea citrate oil, citral, eugenol, peppermint, eucalyptus, anise and camphor oils, were tested for their efficacy against A. ochraceus growth and OTA production by fumigation and contact assays. Natural cinnamaldehyde proved to be the most effective against A. ochraceus when compared to other oils. Complete fungal growth inhibition was obtained at 150–250 µL/L with fumigation and 250–500 µL/L with contact assays for cinnamon oil, natural and synthetic cinnamaldehyde, L. citrate oil and citral. Essential oils had an impact on the ergosterol biosynthesis and OTA production. Complete inhibition of ergosterol biosynthesis was observed at ≥100 µg/mL of natural cinnamaldehyde and at 200 µg/mL of citral, but total inhibition was not observed at 200 µg/mL of eugenol. But, citral and eugenol could inhibit the OTA production at ≥75 µg/mL and ≥150 µg/mL respectively, while natural cinnamaldehyde couldn’t fully inhibit OTA production at ≤200 µg/mL. The inhibition of OTA by natural cinnamaldehyde is mainly due to the reduction in fungal biomass. However, citral and eugenol could significant inhibit the OTA biosynthetic pathway. Also, we observed that cinnamaldehyde was converted to cinnamic alcohol by A. ochraceus, suggesting that the antimicrobial activity of cinnamaldehyde was mainly attributed to its carbonyl aldehyde group. The study concludes that natural cinnamaldehyde, citral and eugenol could be potential biocontrol agents against OTA contamination in storage grains.  相似文献   

7.
采用水蒸气蒸馏法提取椪柑(Citrus reticulate Blanco)果皮精油,并用GC-MS对其成分进行分析,共鉴定出46种成分,主要包括柠檬烯(57.67%)、β-芳樟醇(5.36%)、2-蒈烯(4.47%)、β-蒎稀(4.31%)、γ-松油烯(4.08%)、α-蒎烯(3.27%)、1,2-二异丙烯基环丁烷(2.87%)、β-月桂烯(2.77%)、α-侧柏烯(2.40%)、β-水芹烯(2.24%)、癸醛(1.80%)和香茅醇(1.49%)等。采用污染食物技术(poisoned food technique)和液体培养法(liquid culture)测定了不同浓度椪柑精油以及主要抑菌组分对菌核青霉的抑制作用。结果表明:不同浓度(0.5~20μl/ml)的椪柑精油对菌核青霉生长均有一定的抑制,且抑菌效果与浓度呈正相关。无论是采用污染食物技术还是液体培养法,20μl/ml椪柑精油均能完全抑制菌核青霉生长;随着培养 时间延长到7d, 20μl/ml椪柑精油抑菌效果有所下降,但仍能显著抑制菌核青霉生长。采用污染食物技术考察了椪柑精油中7种常见抑菌成分对菌核青霉的影响。结果表明,0.04μl/ml柠檬醛和1.07μl/ml β-芳樟醇能显著抑制菌核青霉生长,而其他组分无明显作用。实验结果表明,椪柑精油的抑菌作用可能归功于其所含的柠檬醛和β-芳樟醇。  相似文献   

8.
Three groups of volatile compounds, i.e., alcohols, aldehydes and esters, were tested for their effects on arthrospore germination and mycelial growth ofGeotrichum candidum citrus race, the causal agent of citrus sour rot. Alcohols (heptanol, octanol, nonanol, decanol, geraniol, citronellol) at a concentration of 1.0 μl/ml showed 60% or more inhibitory effects on both germination and mycelial growth of this pathogen. Among aldehydes tested, only citral had an inhibitory effect of more than 50%, while esters had no effect. The chain length of straight-chain (C6–C12) alcohols correlated with inhibitory effect, and nonanol (C9) was most active. Treatment with alcohols or citral prior to inoculation reduced colonization and maceration of lemon peel by this pathogen by 70% or more. Results suggested that alcohols or citral can probably be used to prevent the development of citrus sour rot.  相似文献   

9.
Bacteria, yeasts and filamentous fungi were screened for enantio-specific reduction of the α, β-unsaturated carbon bond in citral to produce citronellal. While a traditional aqueous screening system revealed only Zymomonas mobilis as positive, citronellal was produced in an aqueous/organic two liquid phase system by 11 of the 46 tested strains, which demonstrates the relevance of applying two-phase systems to screening strategies. Z. mobilis and Citrobacter freundii formed 1 mM citronellal in 3 h in the presence of a NADPH regenerating system and 20% (v/v) toluene. In comparison to these bacteria, the eukaryotic strains showed at least five-fold lower citral reductase activities. The bacterial strains produced preferentially the (S)-enantiomer of citronellal with e.e. values of >99% for Z. mobilis and 75% for Citrobacter freundii. In contrast the yeasts produced preferentially (R)-citronellal, i.e. Candida rugosa with an enantiomeric excess value of more than 98%. Many strains formed alcoholic by-products, viz. geraniol, nerol and citronellol. For Z. mobilis the production of these alcohols was suppressed in the presence of various organic solvents, e.g. toluene, and further decreased after EDTA addition.  相似文献   

10.
In this study, the antifungal activities of cinnamaldehyde and eugenol congeners against white-rot fungus Lenzites betulina and brown-rot fungus Laetiporus sulphureus were evaluated and the relationships between the antifungal activity and the chemical structures were also examined. Results from antifungal tests revealed that cinnamaldehyde, alpha-methyl cinnamaldehyde, (E)-2-methylcinnamic acid, eugenol and isoeugenol exhibited strong antifungal activity against all fungi tested. Results derived from the chemical structure-antifungal activity relationship study suggested that compounds with an aldehyde group or an acid group, a conjugated double bond and a length of CH chain outside the ring affect their antifungal properties. Furthermore, the presence of the methyl moiety in the ortho position may have a considerable influence on the inhibitory action against L. betulina and L. sulphureus. In addition, the lipophilicity may play, in part, a crucial role in determining the toxicity of phenylpropenes.  相似文献   

11.
Lippia rehmannii H.Pearson (Verbenaceae) is an aromatic bush, indigenous to the northern parts of South Africa. As far as could be ascertained, the essential oil composition has not been previously reported and forms the subject of this investigation. Aerial parts of the shrub were collected from two localities in Gauteng, South Africa, and the isolated essential oils were analysed by gas chromatography. Citral, a mixture of the E- and Z-isomers, was found to be the main constituent of the oils, while borneol, camphor, neryl acetate, isocaryophyllene, p-cymene, β-caryophyllene and β-caryophyllene oxide were other major compounds present. Oil compositions, within and between the two localities, did not differ significantly. The in vitro antifungal activity of L. rehmannii essential oil was compared to that of Cympopogon citratus (lemongrass) and pure citral, against a number of pre- and postharvest fungal food pathogens. At a concentration of 3000 µL/L, lemongrass oil and pure citral caused complete growth inhibition of all the pathogens tested. Lippia rehmannii, containing less citral than lemongrass oil, was effective at this concentration against the majority of pathogens, but only partially restricted the growth of Lasiodiplodia theobromae and Botrytis cinerea. This finding suggests that citral may be largely responsible for the observed antifungal activities. Essential oil from L. rehmannii appears to be a good candidate for the in vitro control of Fusarium oxysporum and Rhizoctonia solani and application of these oils in the field should be investigated.  相似文献   

12.
In light of the performance of the SD2 pigments in DSSC, in order to expand the absorption spectral scope, decrease the energy difference between the highest occupied and the lowest unoccupied molecular orbitals, with SD2 dye molecular electron donor and electron acceptor as the fundamental framework, the indole fragment and thiophene derivative in the prototype dye molecule were replaced by the two π-bridges (labeled PA, PB, respectively) and the four auxiliary electron acceptors (labeled A1, A2, A3, A4, respectively). For the sake of characterizing dye molecules as thoroughly as possible in DSSC, the frontier orbital energy levels, ultraviolet absorption spectra, natural bond orbital analysis, intramolecular charge transfer, charge and hole reorganization energies, parameters influencing the short-circuit current density and the open-circuit photovoltage for these eight individual dye molecules are carried out to try to fully characterize the properties of these dye molecules. According to these computational results of physical quantities and based on the performance of these dye molecules in the above aspects, in this paper, six free molecular models were picked out to combine with titanium dioxide cluster to calculate their geometrical structures, frontier orbital distributions, electron excitation energies, ultraviolet absorption spectra and the composition of the electronic transitions in chloroform solvent with polarizable continuum model. The results of these calculations show that the PA-A2 and PB-A4 dye molecule has better properties in electron transfer and spectral absorption range before and after the adsorption on the titanium dioxide.  相似文献   

13.
The reactions of iridium(III) chloride with different Schiff bases gave complexes of types [Ir(SB)3], [Ir(SB')Cl(H2O)2], [Ir(SB')Cl2]n, [Ir(SB' ')Cl(H2O)]n (SBH = Schiff bases derived from anthranilic acid and benzaldehyde, acetophenone, vanillin, cinnamaldehyde or m-hydroxyacetophenone; SB'H2 = Schiff bases derived from anthranilic acid and salicylaldehyde or o-hydroxyacetophenone; SB'H = Schiff bases derived from p-aminobenzoic acid and benzaldehyde, acetophenone, vanillin, cinnamaldehyde, or m-hydroxyacetophenone; SB' 'H2 = Schiff bases derived from p-aminobenzoic acid and salicylaldehyde or o-hydroxyacetophenone). These complexes have been characterized on the basis of elemental analyses, conductance, magnetic moment, and spectral (electronic, i.r., and 1H n.m.r.) data. The electronic spectra reveals octahedral geometry for these complexes except for [Ir(SB')Cl2]n, which is trigonal bipyramidal. The thermal behavior of these complexes has also been studied by TG, DTG, and DSC techniques. The different kinetic parameters, viz., order of reaction, activation of energy, and heat of reaction were calculated. The antifungal and antiviral activities of the complexes with Schiff bases derived from anthranilic acid have also been investigated.  相似文献   

14.
The essential oils isolated from nine geographical provenances of indigenous cinnamon (Cinnamomum osmophloeum Kaneh.) leaves were examined by GC-MS and their chemical constituents were compared. According to GC-MS and cluster analyses the leaf essential oils of the nine provenances and their relative contents were classified into six chemotypes-cinnamaldehyde type, cinnamaldehyde/cinnamyl acetate type, cinnamyl acetate type, linalool type, camphor type and mixed type. In addition, the antifungal activities of leaf essential oils and their constituents from six chemotypes of indigenous cinnamon were investigated in this study. Results from the antifungal tests demonstrated that the leaf essential oils of cinnamaldehyde type and cinnamaldehyde/cinnamyl acetate type had an excellent inhibitory effect against white-rot fungi, Trametes versicolor and Lenzites betulina and brown-rot fungus Laetiporus sulphureus. The antifungal indices of leaf essential oils from these two chemotypes at the level of 200 micro/ml against T. versicolor, L. betulina and L. sulphureus were all 100%. Among them, the IC(50) (50% of inhibitory concentrations) value of the essential oil of cinnamaldehyde type leaf against L. sulphureus was 52-59microg/ml. Cinnamaldehyde possessed the strongest antifungal activities in comparison with other constituents of the essential oils from cinnamaldehyde type leaf, at the level of 100microg/ml its antifungal indices against T. versicolor, L. betulina and L. sulphureus were 100%. The IC50 values of cinnamaldehyde against T. versicolor, L. betulina and L. sulphureus were 73, 74 and 73microg/ml, respectively.  相似文献   

15.
In this study, the fruit essential oil of Cinnamomum insularimontanum was prepared by using water distillation. Followed by GC-MS analysis, the composition of fruit essential oil was characterized. The main constituents of essential oil were alpha-pinene (9.45%), camphene (1.70%), beta-pinene (4.30%), limonene (1.76%), citronellal (24.64%), citronellol (16.78%), and citral (35.89%). According to the results obtained from nitric oxide (NO) inhibitory activity assay, crude essential oil and its dominant compound (citral) presented the significant NO production inhibitory activity, IC(50) of crude essential oil and citral were 18.68 and 13.18mug/mL, respectively. Moreover, based on the results obtained from the protein expression assay, the expression of IKK, iNOS, and nuclear NF-kappaB was decreased and IkappaBalpha was increased in dose-dependent manners, it proved that the anti-inflammatory mechanism of citral was blocked via the NF-kappaB pathway, but it could not efficiently suppress the activity on COX-2. In addition, citral exhibited a potent anti-inflammatory activity in the assay of croton oil-induced mice ear edema, when the dosage was 0.1 and 0.3mg per ear, the inflammation would reduce to 22% and 83%, respectively. The results presented that the fruit essential oil of C. insularimontanum and/or citral may have a great potential to develop the anti-inflammatory medicine in the future.  相似文献   

16.
山鸡椒挥发油成分分析及其抗真菌保鲜作用的研究   总被引:15,自引:0,他引:15  
本文对湖南山鸡椒(Litsea cubeba)挥发油(山苍子油)抑制植物病原真菌Fusarium oxysporum,Helminthosporium sp.Stemphyllium sp.的效能及其抑制真菌的有效成分进行了研究,实验结果表明,所用山鸡椒挥发油具有很强的抑制植物病原真菌生长的能力,并有明显的保鲜作用,其主要生物活性成份为柠檬醛。  相似文献   

17.
The present paper discusses QSAR studies on antimalarial 2,4-diamino-6-quinazoline sulfonamide derivatives using electronic parameters, namely energy of highest occupied molecular orbitals (EH), energy of lowest unoccupied molecular orbitals (EL) and charge density (CD). The results have shown that better results are obtained by introducing dummy parameters (indicator parameter), Ip. Excellent results are obtained when all the four parameters (EH, EL, CD and Ip) are used in correlation analysis.  相似文献   

18.
Using the all-valence electron, semiempirical molecular orbital method, MNDO, properties have been identified and calculated for eight chloroethanes which can serve as indicators of their extent of transformation to alcohols by cytochrome P450 and the subsequent formation of aldehydes by loss of HCl from these alcohols. The assumption was made that these aldehydes are the active carcinogens of the chloroethanes and that they act as electrophiles in adduct formation with DNA bases. Electrophilic properties of these putative ultimate carcinogens have been calculated which are indicators of the rank order of carcinogenic activity of the parent compounds in susceptible species. Particularly relevant in this respect are (a) the electron affinity of aldehydes as measured by the energy of their electron accepting (lowest energy virtual) orbital, and (b) the net charge on the C alpha carbon, adjacent to the carbonyl carbon, which can participate in electrophilic attack on nucleophilic sites of DNA bases. The molecular properties identified in this study as indicators of rank order or carcinogenic activity of the parent chloroethanes are consistent with the importance of cytochrome P450 in transforming halohydrocarbons to active carcinogens and of acylchlorides and chloroaldehydes as the active form. Their validity and usefulness can be further tested in screening unknown and more complex chlorohydrocarbons for carcinogenic activity.  相似文献   

19.
Interaction between metal nanoparticles and biomolecules is important from the view point of developing and designing biosensors. Studies on proline tagged with gold nanoclusters are reported here using density functional theory (DFT) calculations for its structural, electronic and bonding properties. Geometries of the complexes are optimized using the PBE1PBE functional and mixed basis set, i. e., 6-311++G for the amino acid and SDD for the gold clusters. Equilibrium configurations are analyzed in terms of interaction energies, molecular orbitals and charge density. The complexes associated with cluster composed of an odd number of Au atoms show higher stability. Marked decrease in the HOMO-LUMO gaps is observed on complexation. Major components of interaction between the two moieties are: the anchoring N-Au and O-Au bond; and the non covalent interactions between Au and N-H or O-H bonds. The electron affinities and vertical ionization potentials for all complexes are calculated. They show an increased value of electron affinity and ionization potential on complexation. Natural bond orbital (NBO) analysis reveals a charge transfer between the donor (proline) and acceptor (gold cluster). The results indicate that the nature of interaction between the two moieties is partially covalent. Our results will be useful for further experimental studies and may be important for future applications.  相似文献   

20.
Abstract

Traditional herbal monomers (THMs) are widely distributed in many traditional Chinese formulas (TCFs) and decoctions (TCDs) and are frequently used for the prevention and treatment of fungal infections. The antifungal activities of five common THMs, including sodium houttuyfonate (SH), berberine (BER), palmatine (PAL), jatrorrhizine (JAT) and cinnamaldehyde (CIN), and their potential for inducing cell wall remodeling (CWR), were evaluated against Candida albicans SC5314 and Candida auris 12372. SH/CIN plus BER/PAL/JAT showed synergistic antifungal activity against both Candida isolates. Furthermore, SH-associated combinations (SH plus BER/PAL/JAT) induced stronger exposure of β-glucan and chitin than their counterparts, while CIN triggered more marked exposure compared with CIN-associated combinations (CIN plus BER/PAL/JAT). Collectively, this study demonstrated the anti-Candida effect and the CWR induction potential of the five THMs and their associated combinations, providing a possibility of their in vivo application against fungal-associated infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号