首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Attempts to elicit broadly neutralizing antibody responses by human immunodeficiency virus type 1 (HIV-1) vaccine antigens have been met with limited success. To better understand the requirements for cross-neutralization of HIV-1, we have characterized the neutralizing antibody specificities present in the sera of three asymptomatic individuals exhibiting broad neutralization. Two individuals were infected with clade B viruses and the third with a clade A virus. The broadly neutralizing activity could be exclusively assigned to the protein A-reactive immunoglobulin G (IgG) fraction of all three donor sera. Neutralization inhibition assays performed with a panel of linear peptides corresponding to the third hypervariable (V3) loop of gp120 failed to inhibit serum neutralization of a panel of HIV-1 viruses. The sera also failed to neutralize chimeric simian immunodeficiency virus (SIV) and HIV-2 viruses displaying highly conserved gp41-neutralizing epitopes, suggesting that antibodies directed against these epitopes likely do not account for the broad neutralizing activity observed. Polyclonal IgG was fractionated on recombinant monomeric clade B gp120, and the neutralization capacities of the gp120-depleted samples were compared to that of the original polyclonal IgG. We found that the gp120-binding antibody population mediated neutralization of some isolates, but not all. Overall, the data suggest that broad neutralization results from more than one specificity in the sera but that the number of these specificities is likely small. The most likely epitope recognized by the monomeric gp120 binding neutralizing fraction is the CD4 binding site, although other epitopes, such as the glycan shield, cannot be excluded.  相似文献   

2.
The purpose of these studies was to determine the proportion of each immunoglobulin class/subclass in blood and colostrum of the pig and sheep, which would bind to staphylococcal Protein A. The concentrations of porcine IgG, IgM, and IgA were determined for serum and colostral whey from five sows. Similar measurements were made on two fractions produced by elution of the sample through a Protein A-Sepharose column: fraction 1, immunoglobulins which did not bind to Protein A, and fraction 2, immunoglobulins which bound to Protein A. The concentrations of ovine IgG1, IgG2, IgM, and IgA were measured for serum and colostral whey from six ewes, and again similar measurements were made after elution of each ovine sample through Protein A-Sepharose. All classes/subclasses of porcine and ovine serum and colostral immunoglobulins bound to Protein A to some extent. More than 90% of IgG from both porcine colostral whey and serum bound to Protein A. Ovine IgG1 from most ewes possessed a low affinity for Protein A whereas ovine IgG2 generally possessed a high affinity; 100% of the IgG2 in ovine colostral whey samples bound to Protein A. There was remarkable variation between individuals in the binding capacity of porcine IgM and each of the ovine immunoglobulins. For the ovine samples, in particular there were distinct differences between Protein A binding capacity of serum and colostral immunoglobulins of the same class/subclass.  相似文献   

3.
Using synthetic peptides, we characterized the B-lymphocyte (antibody) and T-lymphocyte (proliferation) responses to an immunodominant epitope of human immunodeficiency virus type 1 (HIV-1) located near the amino-terminal end of the transmembrane glycoprotein (env amino acids 598 to 609). Both immunoglobulin M (IgM) and IgG antibodies against this epitope appeared early after primary infection with HIV-1. In an animal model, the IgG response to a synthetic peptide derived from this sequence was T-helper-cell dependent, whereas the IgM response was T-cell independent. In addition, antibody generated by immunization with this peptide had HIV-1-neutralizing activity. Greater than 99% (201 of 203) of patients infected with HIV-1 generated antibody to this peptide in vivo; however, only 24% (7 of 29) had T cells that proliferated in response to this peptide in vitro. These observations suggest that different HIV-1 gp41 epitopes elicit B-cell and T-cell immune responses.  相似文献   

4.
We have investigated the induction of protective mucosal immunity to human immunodeficiency virus type 1 (HIV-1) isolate 89.6 by intranasal (i.n.) immunization of mice with gp120 and gp140 together with interleukin-12 (IL-12) and cholera toxin subunit B (CTB) as adjuvants. It was found that both IL-12 and CTB were required to elicit mucosal antibody responses and that i.n. immunization resulted in increased total, immunoglobulin G1 (IgG1), and IgG2a anti-HIV-1 antibody levels in serum; increased total, IgG1, IgG2a, and IgA antibody expression in bronchoalveolar lavage fluids; and increased IgA antibody levels in vaginal washes. Levels of anti-HIV-1 antibodies in both sera and secretions were higher in groups immunized with gp140 than in those immunized with gp120. However, only gp120-specific mucosal antibodies demonstrated neutralizing activity against HIV-1 89.6. Taken together, the results show that IL-12 and CTB act synergistically to enhance both systemic and local mucosal antibody responses to HIV-1 glycoproteins and that even though gp140 induces higher antibody titers than gp120, only gp120-specific mucosal antibodies interfere with virus infectivity.  相似文献   

5.
Switching from IgM to IgG and IgA is essential for antiviral immunity and requires engagement of CD40 on B cells by CD40L on CD4(+) T cells. HIV-1 is thought to impair CD40-dependent production of protective IgG and IgA by inducing progressive loss of CD4(+) T cells. Paradoxically, this humoral immunodeficiency is associated with B cell hyperactivation and increased production of nonprotective IgG and IgA that are either nonspecific or specific for HIV-1 envelope glycoproteins, including gp120. Nonspecific and gp120-specific IgG and IgA are sensitive to antiretroviral therapy and remain sustained in infected individuals with very few CD4(+) T cells. One interpretation is that some HIV-1 Ags elicit IgG and IgA class switch DNA recombination (CSR) in a CD40-independent fashion. We show that a subset of B cells binds gp120 through mannose C-type lectin receptors (MCLRs). In the presence of gp120, MCLR-expressing B cells up-regulate the CSR-inducing enzyme, activation-induced cytidine deaminase, and undergo CSR from IgM to IgG and IgA. CSR is further enhanced by IL-4 or IL-10, whereas Ab secretion requires a B cell-activating factor of the TNF family. This CD40L-related molecule is produced by monocytes upon CD4, CCR5, and CXCR4 engagement by gp120 and cooperates with IL-4 and IL-10 to up-regulate MCLRs on B cells. Thus, gp120 may elicit polyclonal IgG and IgA responses by linking the innate and adaptive immune systems through the B cell-activating factor of the TNF family. Chronic activation of B cells through this CD40-independent pathway could impair protective T cell-dependent Ab responses by inducing immune exhaustion.  相似文献   

6.
We have isolated and characterized human monoclonal antibody 2G12 to the gp120 surface glycoprotein of human immunodeficiency virus type 1 (HIV-1). This antibody potently and broadly neutralizes primary and T-cell line-adapted clade B strains of HIV-1 in a peripheral blood mononuclear cell-based assay and inhibits syncytium formation in the AA-2 cell line. Furthermore, 2G12 possesses neutralizing activity against strains from clade A but not from clade E. Complement- and antibody-dependent cellular cytotoxicity-activating functions of 2G12 were also defined. The gp120 epitope recognized by 2G12 was found to be distinctive; binding of 2G12 to LAI recombinant gp120 was abolished by amino acid substitutions removing N-linked carbohydrates in the C2, C3, V4, and C4 regions of gp120. This gp120 mutant recognition pattern has not previously been observed, indicating that the 2G12 epitope is unusual. consistent with this, antibodies able to block 2G12 binding to recombinant gp120 were not detected in significant quantities in 16 HIV-positive human serum samples.  相似文献   

7.
The dense glycan shield on the surface of human immunodeficiency virus type 1 (HIV-1) gp120 masks conserved protein epitopes and facilitates virus entry via interaction to glycan binding proteins on susceptible host cells. The broadly neutralizing monoclonal antibody 2G12 binds a cluster of high-mannose oligosaccharides on the gp120 subunit of HIV-1 Env protein. This oligomannose epitope is currently being considered for the design of a synthetic vaccine. The cluster nature of the 2G12 epitope suggests that a multivalent antigen presentation is important to develop a carbohydrate-based vaccine candidate. In this work we describe the development of neoglycoconjugates displaying clustered HIV-1 related oligomannose carbohydrates. We exploited flexible polyamidoamine (PAMAM) scaffold to generate four- and eight-valent sugar clusters of HIV-1-related oligomannose antigens Man4, Man6 and Man9. The multivalent presentation of oligomannoses increased the avidity of Man4 and Man9 to 2G12. The synthetic glycodendrons were then covalently coupled to the protein carrier CRM197, formulated with the adjuvant MF59, and used to immunize two animal species. Oligomannose-specific IgG antibodies were generated; however, the antisera failed to recognize recombinant HIV-1 gp120 proteins. We conclude that further structural vaccinology work is needed to identify an antigen presentation that closely matches in vivo the structure of the epitope mapped by 2G12.  相似文献   

8.
Immunoreactive regions of human immunodeficiency virus type 1 (HIV-1) gp41 were mapped by reacting HIV-1 antibody-positive human sera with overlapping synthetic peptides which covered the transmembrane protein. Three immunoreactive domains were identified, and five different and partially overlapping epitopes recognized by HIV-1-positive human sera were found within one immunodominant region. The effect on antibody recognition after single amino acid substitutions within one defined epitope was also studied. The reactivity of various HIV-1-positive sera to synthetic peptides with amino acid substitutions representing known isolates suggests an important substitution in the major epitope of African HIV-1 strains.  相似文献   

9.
Papain digestion of 7S immunoglobulin G (IgG) produces two 3.5S Fab fragments and one 3.5S Fc fragment1–8. The Fab fragment contains one light chain and one Fd fragment and is still able to combine specifically univalently with antigen. The Fc fragment is a dimer of the carboxyl terminal half of the heavy chain. Pepsin splits 7S IgG into some small peptides derived from Fc and one 5S F(ab′)2 fragment, which contains both antigen-binding sites. Based on this information, some investigators6,7 have postulated that pepsin splits the γ chains at the C-terminal side of the inter-heavy chain disulphide bridges, whereas papain splits at the N-terminal side of the inter-heavy chain disulphide bridges. We report here evidence that this model does not apply to all IgG subclasses. In the case of human IgG2 subclass myeloma proteins, papain splits initially at the C-terminal side of inter-heavy chain disulphide bridges. We also show that the amino-acid sequence of the Fc fragment of human IgG2 subclass so far determined has approximately 95% homology with that of human IgG1 and IgG4 subclasses reported by others9–15.  相似文献   

10.
The antibody molecule comprises a variable domain conferring antigen specificity and affinity distinct from the heavy chain constant (CH) domains dictating effector functions. We here interrogate this paradigm by evaluating the unique influence of the CH1α domain on epitope specificity and functions using two mucosal gp41-specific Fab-IgAs (FabA) derived from HIV-1 highly-exposed but persistently seronegative individuals (HESN). These HESN develop selectively affinity-matured HIV-1-specific mucosal IgA that target the gp41 viral envelope and might provide protection although by unclear mechanisms. Isotype-switching FabAs into Fab-IgGs (FabGs) results in a >10-fold loss in affinity for HIV-1 clade A, B, and C gp41, together with reduced neutralization of HIV-1 cross-clade. The FabA conformational epitopes map selectively on gp41 in 6-Helix bundle and pre-fusion conformations cross-clade, unlike FabGs. Finally, we designed in silico, a 12 amino-acid peptide recapitulating one FabA conformational epitope that inhibits the FabA binding to gp41 cross-clade and its neutralizing activity. Altogether, our results reveal that the CH1α domain shapes the antibody paratope through an allosteric effect, thereby strengthening the antibody specificity and functional activities. Further, they clarify the mechanisms by which these HESN IgAs might confer protection against HIV-1-sexual acquisition. The IgA-specific epitope we characterized by reverse vaccinology could help designing a mucosal HIV-1 vaccine.  相似文献   

11.
The development of HIV-1 vaccines is challenged by the lack of relevant models to accurately induce human B- and T-cell responses in lymphoid organs. In humanized mice reconstituted with human hematopoietic stem cells (hu-mice), human B cell-development and function are impaired and cells fail to efficiently transition from IgM B cells to IgG B cells. Here, we found that CD40-targeted vaccination combined with CpG-B adjuvant overcomes the usual defect of human B-cell switch and maturation in hu-mice. We further dissected hu-B cell responses directed against the HIV-1 Env protein elicited by targeting Env gp140 clade C to the CD40 receptor of antigen-presenting cells. The anti-CD40.Env gp140 vaccine was injected with CpG-B in a homologous prime/boost regimen or as a boost of a NYVAC-KC pox vector encoding Env gp140 clade C. Both regimens elicited Env-specific IgG-switched memory hu-B cells at a greater magnitude in hu-mice primed with NYVAC-KC. Single-cell RNA-seq analysis showed gp140-specific hu-B cells to express polyclonal IgG1 and IgG3 isotypes and a broad Ig VH/VL repertoire, with predominant VH3 family gene usage. These cells exhibited a higher rate of somatic hypermutation than the non-specific IgG+ hu-B-cell counterpart. Both vaccine regimens induced splenic GC-like structures containing hu-B and hu-Tfh-like cells expressing PD-1 and BCL-6. We confirmed in this model that circulating ICOS+ memory hu-Tfh cells correlated with the magnitude of gp140-specific B-cell responses. Finally, the NYVAC-KC heterologous prime led to a more diverse clonal expansion of specific hu-B cells. Thus, this study shows that CD40-targeted vaccination induces human IgG production in hu-mice and provides insights for the development of a CD40-targeting vaccine to prevent HIV-1 infection in humans.  相似文献   

12.

Background

Many participants in microbicide trials remain uninfected despite ongoing exposure to HIV-1. Determining the emergence and nature of mucosal HIV-specific immune responses in such women is important, since these responses may contribute to protection and could provide insight for the rational design of HIV-1 vaccines.

Methods and Findings

We first conducted a pilot study to compare three sampling devices (Dacron swabs, flocked nylon swabs and Merocel sponges) for detection of HIV-1-specific IgG and IgA antibodies in vaginal secretions. IgG antibodies from HIV-1-positive women reacted broadly across the full panel of eight HIV-1 envelope (Env) antigens tested, whereas IgA antibodies only reacted to the gp41 subunit. No Env-reactive antibodies were detected in the HIV-negative women. The three sampling devices yielded equal HIV-1-specific antibody titers, as well as total IgG and IgA concentrations. We then tested vaginal Dacron swabs archived from 57 HIV seronegative women who participated in a microbicide efficacy trial in Southern Africa (HPTN 035). We detected vaginal IgA antibodies directed at HIV-1 Env gp120/gp140 in six of these women, and at gp41 in another three women, but did not detect Env-specific IgG antibodies in any women.

Conclusion

Vaginal secretions of HIV-1 infected women contained IgG reactivity to a broad range of Env antigens and IgA reactivity to gp41. In contrast, Env-binding antibodies in the vaginal secretions of HIV-1 uninfected women participating in the microbicide trial were restricted to the IgA subtype and were mostly directed at HIV-1 gp120/gp140.  相似文献   

13.
The propensity of HIV-1 to undergo sequence variation, particularly in the envelope glycoprotein gp120, complicates vaccine development and may enable the virus to evade ongoing immune responses in infected individuals. We present here a molecular analysis of the effects of this variability on human T cell recognition of HIV-1 gp120. Synthetic peptides representing a defined CD4+ human T cell epitope in gp120 were used to survey gp120 molecules from various HIV-1 strains for the capacity to be recognized in the context of a single human MHC molecule, DR4. Variation affected recognition at two levels. For some strains, variation in this epitope was sufficient to alter the interaction of Ag receptors on gp120-specific human T cell clones with peptide-DR4 complexes on APC. In the case of two strains, the natural variation was sufficient to prevent the critical initial interaction between the relevant gp120 peptides and DR4 on the APC. However, these strains were highly divergent from the reference strain. Thus it is encouraging to note that the range of natural sequence variation in this T cell epitope falls, for the most part, within the range of peptide sequences that can be accommodated by the relevant human MHC molecule.  相似文献   

14.
The envelope glycoprotein (Env) of human immunodeficiency virus type 1 (HIV-1) is composed of two noncovalently associated subunits: an extracellular subunit (gp120) and a transmembrane subunit (gp41). The functional unit of Env on the surface of infectious virions is a trimer of gp120/gp41 heterodimers. Env is the target of anti-HIV neutralizing antibodies. A considerable effort has been invested in the engineering of recombinant soluble forms of the virion-associated Env trimer as vaccine candidates to elicit anti-HIV neutralizing antibody responses. These soluble constructs contain three gp120 subunits and the extracellular segments of the corresponding gp41 subunits. The individual gp120/gp41 protomers on these soluble trimers are identical in amino acid sequence (homotrimers). Here, we engineered novel soluble trimeric gp140 proteins that are formed by the association of gp140 protomers that differ in amino acid sequence and glycosylation patterns (heterotrimers). Specifically, we engineered soluble heterotrimeric proteins composed of clade A and clade B Env protomers. The clade A gp140 protomers were derived from viruses isolated during acute infection (Q168a2, Q259d2.17, and Q461e2), whereas the clade B gp140 protomers were derived from a virus isolated during chronic infection (SF162). The amino acid sequence divergence between the clade A and the clade B Envs is approximately 24%. Neutralization epitopes in the CD4 binding sites and coreceptor binding sites, as well as the membrane-proximal external region (MPER), were differentially expressed on the heterotrimeric and homotrimeric proteins. The heterotrimeric gp140s elicited broader anti-tier 1 isolate neutralizing antibody responses than did the homotrimeric gp140s.  相似文献   

15.
The identification and characterization of new human monoclonal antibodies (hMAbs) able to neutralize primary human immunodeficiency virus type 1 (HIV-1) isolates from different subtypes may help in our understanding of the mechanisms of virus entry and neutralization and in the development of entry inhibitors and vaccines. For enhanced selection of broadly cross-reactive antibodies, soluble HIV-1 envelope glycoproteins (Envs proteins) from two isolates complexed with two-domain soluble CD4 (sCD4) were alternated during panning of a phage-displayed human antibody library; these two Env proteins (89.6 and IIIB gp140s), and one additional Env (JR-FL gp120) alone and complexed with sCD4 were used for screening. An antibody with relatively long HCDR3 (17 residues), designated m14, was identified that bound to all antigens and neutralized heterologous HIV-1 isolates in multiple assay formats. Fab m14 potently neutralized selected well-characterized subtype B isolates, including JRCSF, 89.6, IIIB, and Yu2. Immunoglobulin G1 (IgG1) m14 was more potent than Fab m14 and neutralized 7 of 10 other clade B isolates; notably, although the potency was on average significantly lower than that of IgG1 b12, IgG1 m14 neutralized two of the isolates with significantly lower 50% inhibitory concentrations than did IgG1 b12. IgG1 m14 neutralized four of four selected clade C isolates with potency higher than that of IgG1 b12. It also neutralized 7 of 17 clade C isolates from southern Africa that were difficult to neutralize with other hMAbs and sCD4. IgG1 m14 neutralized four of seven primary HIV-1 isolates from other clades (A, D, E, and F) much more efficiently than did IgG1 b12; for the other three isolates, IgG b12 was much more potent. Fab m14 bound with high (nanomolar range) affinity to gp120 and gp140 from various isolates; its binding was reduced by soluble CD4 and antibodies recognizing the CD4 binding site (CD4bs) on gp120, and its footprint as defined by alanine-scanning mutagenesis overlaps that of b12. These results suggest that m14 is a novel CD4bs cross-reactive HIV-1-neutralizing antibody that exhibits a different inhibitory profile compared to the only known potent broadly neutralizing CD4bs human antibody, b12, and may have implications for our understanding of the mechanisms of immune evasion and for the development of inhibitors and vaccines.  相似文献   

16.
Most antibodies that broadly neutralize HIV-1 are highly somatically mutated in antibody clonal lineages that persist over time. Here, we describe the analysis of human antibodies induced during an HIV-1 vaccine trial (GSK PRO HIV-002) that used the clade B envelope (Env) gp120 of clone W6.1D (gp120W6.1D). Using dual-color antigen-specific sorting, we isolated Env-specific human monoclonal antibodies (MAbs) and studied the clonal persistence of antibodies in the setting of HIV-1 Env vaccination. We found evidence of VH somatic mutation induced by the vaccine but only to a modest level (3.8% ± 0.5%; range 0 to 8.2%). Analysis of 34 HIV-1-reactive MAbs recovered over four immunizations revealed evidence of both sequential recruitment of naïve B cells and restimulation of previously recruited memory B cells. These recombinant antibodies recapitulated the anti-HIV-1 activity of participant serum including pseudovirus neutralization and antibody-dependent cell-mediated cytotoxicity (ADCC). One antibody (3491) demonstrated a change in specificity following somatic mutation with binding of the inferred unmutated ancestor to a linear C2 peptide while the mutated antibody reacted only with a conformational epitope in gp120 Env. Thus, gp120W6.1D was strongly immunogenic but over four immunizations induced levels of affinity maturation below that of broadly neutralizing MAbs. Improved vaccination strategies will be needed to drive persistent stimulation of antibody clonal lineages to induce affinity maturation that results in highly mutated HIV-1 Env-reactive antibodies.  相似文献   

17.
While one hypervariable, linear neutralizing determinant on the human immunodeficiency virus type 1 (HIV-1) gp120 envelope glycoprotein has been well characterized, little is known about the conserved, discontinuous gp120 epitopes recognized by neutralizing antibodies in infected individuals. Here, the epitope recognized by a broadly reactive neutralizing monoclonal antibody (F105) derived from an HIV-1-infected patient was characterized by examining the effects of changes in conserved gp120 amino acids on antibody reactivity. The F105 epitope was disrupted by changes in gp120 amino acids 256 and 257, 368 to 370, 421, and 470 to 484, which is consistent with the discontinuous nature of the epitope. Three of these regions are proximal to those previously shown to be important for CD4 binding, which is consistent with the ability of the F105 antibody to block gp120-CD4 interaction. Since F105 recognition was more sensitive to amino acid changes in each of the four identified gp120 regions than was envelope glycoprotein function, replication-competent mutant viruses that escaped neutralization by the F105 antibody were identified. These studies identify a conserved, functional HIV-1 gp120 epitope that is immunogenic in man and may serve as a target for therapeutic or prophylactic intervention.  相似文献   

18.
Clade C is one of the most prevalent genetic subtypes of human immunodeficiency virus type 1 (HIV-1) in the world today and one of the least studied with respect to neutralizing antibodies. Most information on HIV-1 serology as it relates to neutralization is derived from clade B. Clade C primary isolates of HIV-1 from South Africa and Malawi were shown here to resemble clade B isolates in their resistance to inhibition by soluble CD4 and their sensitivity to neutralization by human monoclonal antibody immunoglobulin G1b12 and, to a lesser extent, 2F5. Unlike clade B isolates, however, all 16 clade C isolates examined resisted neutralization by 2G12. Infection with clade C HIV-1 in a cohort of female sex workers in South Africa generated antibodies that neutralized the autologous clade C isolate and T-cell-line-adapted (TCLA) strains of clade B. Neutralization of clade B TCLA strains was much more sensitive to the presence of autologous gp120 V3 loop peptides compared to the neutralization of clade C isolates in most cases. Thus, the native structure of gp120 on primary isolates of clade C will likely pose a challenge for neutralizing antibody induction by candidate HIV-1 vaccines much the same as it has for clade B. The autologous neutralizing antibody response following primary infection with clade C HIV-1 in South Africa matured slowly, requiring at least 4 to 5 months to become detectable. Once detectable, extensive cross-neutralization of heterologous clade C isolates from South Africa was observed, suggesting an unusual degree of shared neutralization determinants at a regional level. This high frequency of cross-neutralization differed significantly from the ability of South African clade C serum samples to neutralize clade B isolates but did not differ significantly from results of other combinations of clade B and C reagents tested in checkerboard assays. Notably, two clade C serum samples obtained after less than 2 years of infection neutralized a broad spectrum of clade B and C isolates. Other individual serum samples showed a significant clade preference in their neutralizing activity. Our results suggest that clades B and C are each comprised of multiple neutralization serotypes, some of which are more clade specific than others. The clustering of shared neutralization determinants on clade C primary HIV-1 isolates from South Africa suggests that neutralizing antibodies induced by vaccines will have less epitope diversity to overcome at a regional level.  相似文献   

19.
An HIV-1 vaccine remains elusive, in part because various factors limit the quantity and quality of the antibodies raised against the viral envelope glycoprotein complex (Env). We hypothesized that targeting Env vaccines directly to B cells, by fusing them to molecules that bind and activate these cells, would improve Env-specific antibody responses. Therefore, we fused trimeric Env gp140 to A PRoliferation-Inducing Ligand (APRIL), B-cell Activating Factor (BAFF), and CD40 Ligand (CD40L). The Env-APRIL, Env-BAFF, and Env-CD40L gp140 trimers all enhanced the expression of activation-induced cytidine deaminase (AID), the enzyme responsible for inducing somatic hypermutation, antibody affinity maturation, and antibody class switching. They also triggered IgM, IgG, and IgA secretion from human B cells in vitro. The Env-APRIL trimers induced higher anti-Env antibody responses in rabbits, including neutralizing antibodies against tier 1 viruses. The enhanced Env-specific responses were not associated with a general increase in total plasma antibody concentrations, indicating that the effect of APRIL was specific for Env. All the rabbit sera raised against gp140 trimers, irrespective of the presence of CD40L, BAFF, or APRIL, recognized trimeric Env efficiently, whereas sera raised against gp120 monomers did not. The levels of trimer-binding and virus-neutralizing antibodies were strongly correlated, suggesting that gp140 trimers are superior to gp120 monomers as immunogens. Targeting and activating B cells with a trimeric HIV-1 Env-APRIL fusion protein may therefore improve the induction of humoral immunity against HIV-1.  相似文献   

20.
A human monoclonal antibody designated 15e is reactive with the envelope glycoprotein (gp120) of multiple isolates of human immunodeficiency virus type 1 (HIV-1). Antibody 15e also neutralizes HIV-1 with broad specificity and blocks gp120 binding to CD4. Characterization of the 15e epitope shows that it is conformation dependent and is distinct from previously recognized functional domains of gp120, suggesting that this epitope represents a novel site important for HIV-1 neutralization and CD4 binding. These findings have implications for the development of a vaccine for AIDS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号