首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
将链霉菌A048在完全培养基中培养至对数生长末期,离心洗涤收集菌丝体,然后接种入发酵产酶培养基中,进行二步发酵工艺生产几丁质酶,几丁质酶活力比一步发酵工艺提高1.1倍,发酵周期共54h,比一步发酵工艺缩短66h;把菌丝体与几丁质粉共固定化,接入发酵产酶培养基中培养36h,几丁质酶活力比一步发酵工艺提高1.8倍,发酵周期缩短54h;在二步发酵工艺中另添加0.4%纤维素,几丁质酶活力可提高4倍,比一步发酵工艺提高10倍,酶活力达18.52U/mL。采用几丁质和纤维素双因子诱导二步发酵工艺可能是链霉菌A048生  相似文献   

2.
几丁质酶产生菌的筛选及产酶条件的研究*   总被引:20,自引:0,他引:20  
从301株几丁质降解菌包括细菌、放线菌和真菌中,筛选出一株产几丁质酶活力较高的链霉菌A048(Streptomycessp.A048)。其产酶的适宜条件是,培养温度30℃,培养基pH7.0~7.5,碳源几丁质,氮源NH4NO3,体积溶氧系数kd值为1.56×10-6mol/(mL·min·atm),振荡培养120h,产酶可达15.1U/mL。  相似文献   

3.
生物农药由于具有良好的生态效应和安全性,因此比化学农药更受到人们的青睐,生物农药的发展契合低碳、循环、清洁绿色经济发展理念。因此,寻求利于食品安全和环境保护,同时高效控制植物病害的新型生物农药成为时下及未来研究的热点。链霉菌以产生纳他霉素等抗生素起到生防作用。链霉菌株A01-chit33CT既可以产生纳他霉素又可以高表达几丁质酶活,生防效果大大增加。为确定链霉菌A01-chit33CT产纳他霉素和几丁质酶协同表达的发酵条件,初步探索了碳氮源和发酵条件对菌株产生纳他霉素和几丁质酶的影响。结果表明,葡萄糖促进纳他霉素的产生而抑制几丁质酶的表达,因此分两阶段添加葡萄糖和几丁质粉来达到二者协同表达。研究确定最佳发酵培养基为:葡萄糖40 g/L,几丁质粉10 g/L(发酵4 d添加),黄豆粉30 g/L,大豆蛋白胨10 g/L,CaCO35 g/L,MgSO4.7H2O 0.5 g/L,K2HPO40.5 g/L。最优发酵条件为:初始pH 6.0,温度28℃,转速180 r/min。在此条件下,链霉菌A01-chit33CT产纳他霉素达1.52 g/L,同时几丁质酶活达990 U/ml,二者比优化前的水平分别提高了1.95倍和2.27倍。  相似文献   

4.
采用平板透明圈法从土壤中分离筛选到一株产几丁质酶放线菌株L12,用250mL摇瓶发酵初筛和复筛,酶活力为0.63U/mL。通过产酶条件实验,初步确定了该菌株较适产酶培养基和摇瓶发酵条件。条件优化后,30℃、250mL摇瓶发酵48h,几丁质酶活力达到1.06U/mL。  相似文献   

5.
在筛选纤维素酶活菌株时,发现一株放线菌链霉菌属S10A09具有较高的纤维素酶活力。为了获得高酶活纤维素酶,将Plackett-Burman(PB)筛选和中心组合设计(CCD)以及响应面分析法相结合,考察影响链霉菌属S10A09发酵生产滤纸酶的发酵条件。Plackett-Burman结果表明,羧甲基纤维素钠(CMC-Na)和(NH_4)_2SO_4是影响S10A09发酵产纤维素酶活高低的主要因素。CCD实验优化后产酶最优发酵培养基(g/L)为CMC-Na 2.57、(NH_4)_2SO_411.31、KH_2PO_4 0.2、MgSO_41、FeSO_40.01。优化后,滤纸酶活(FPA)达到125.96 U/mL,接近优化前的3倍。  相似文献   

6.
发酵条件优化可提高少根根霉菌株8B所产纤溶酶的活性。使用单因素试验和正交试验确定该茵发酵产酶的最佳条件。试验确定最优化发酵条件,培养基:麸皮水5g/L,尿素5g/L,胰蛋白胨0.5g/L,K2HPO4·3H2O 0.3g/L,MgSO4·7H2O 0.15g/L,pH5.5,摇床转速160r/min,30℃发酵56h。在此优化条件下培养,8B产纤溶酶活力达到345.41U/mL,是初始培养基发酵产酶活力的7.52倍。  相似文献   

7.
【目的】鉴定一株来源于中国南海海水样能够分泌多种胞外几丁质酶的类芽孢杆菌CAU904,并优化其产几丁质酶的发酵条件。【方法】采用形态学观察、16S r DNA序列比对及生理生化实验鉴定;通过碳源、氮源、温度、初始p H、表面活性剂种类以及发酵时间的单因素优化实验获得最佳发酵条件。【结果】菌株CAU904被鉴定为巴伦葛兹类芽孢杆菌(Paenibacillus barengoltzii),其最优发酵产酶条件为:0.5%胶体几丁质,0.2%酵母浸提物,0.1%吐温-80,培养基初始p H 7.0,45°C培养72 h。在最优发酵条件下,该菌株最大产酶水平达到8.2 U/m L,比优化前提高了5.4倍。几丁质酶的酶谱分析表明该菌株能够产生多达11种具有几丁质水解活性的同工酶,其中主要酶谱带对应分子量分别为54、47和38 k D。【结论】实验结果为巴伦葛兹类芽孢杆菌几丁质酶的分离纯化和酶的应用提供了基础。  相似文献   

8.
为提高黏质沙雷氏菌株S68-CM5产几丁质酶能力,对产酶发酵条件进行优化研究。利用Plackett-Burman设计和响应面法对培养基和发酵条件进行摸索。结果显示,获得最佳发酵产酶培养基:胶体几丁质1.5%,牛肉膏7 g/L,酵母膏2 g/L,葡萄糖8 g/L,氯化钠3.5 g/L,蛋白胨2 g/L,磷酸氢二钾3.5 g/L;最佳产酶培养条件为:p H6.88,温度27.32℃,摇床转数155.82r/min,培养时间60 h,接种量1%,装液量50 m L/250 m L。优化后产酶量达到7.131 U/m L,比优化前产酶量提高了1.43倍。  相似文献   

9.
β-葡聚糖酶高产菌株BS9418F的选育及其发酵条件的研究   总被引:13,自引:0,他引:13  
经60 Coγ射线辐照处理获得的诱变菌株芽孢杆菌BS9418F ,其产酶活力比出发菌株提高 30 %以上。该菌株以大麦粉 7%、玉米粉 3%、豆粕 3%及适量无机盐为培养基最佳配比 ,其最适培养条件为 :培养基初始 pH 7.0 ,摇瓶装量 5 0mL/ 30 0mL三角瓶 ,种龄 16~ 2 0h ,接种量 2 %~ 3% ,培养温度 36~ 37℃ ,发酵周期 40h。在优化条件下 ,摇瓶发酵产 β 葡聚糖酶活力高达 5 5 0 0u/mL以上 ,比出发菌株初始发酵水平提高了 4倍以上  相似文献   

10.
链霉菌702产孢子固体培养基和培养条件的筛选   总被引:2,自引:0,他引:2  
通过单因素实验、均匀设计和正交实验对链霉菌702产抱子培养基和培养条件进行筛选,筛选到的最佳培养基组成为:马铃薯2009/L,葡萄糖25g/L.最佳培养条件为培养温度37℃、培养时间5天和培养基初始pH值8.实验结果表明,采用优化后的培养基和培养条件,使链霉菌702产抱子数达到4.07亿,比原来培养基(高氏一号培养基)产抱予量提高了8.7倍,培养时间却从原来的7天缩短到现在的5天.  相似文献   

11.
The previously selected strain Streptomyces griseus var. streptomycini is able to hydrolyze colloid as well as crystal forms of chitin. During the submerged cultivation in the medium with crystal chitin, the chitinase activity achieved the maximal value after 46–50 h of culturing. Use of colloid chitin as an inductor allowed increasing the chitinolytic activity by 33%. Adding of mannose to the medium increased the chitinase activity of the producer by two times. It has been shown that the chitinase biosynthesis bears an inducible nature.  相似文献   

12.
Chitinases are the enzymes which are capable of hydrolyzing chitin to its monomer N-acetyl glucosamine (GlcNac). Present study emphasizes on the impact of critical process variables on the production of chitinase from Streptomyces pratensis strain KLSL55. Initially the isolate was noticed to produce 84.67?IU chitinase in basal production medium. At optimization of bioprocess variables, the physical parameters pH of 8.00, 40?°C of incubation temperature, agitation speed of 160?rpm and 1.25?mL of spore suspension were found optimum for improved production of chitinase. Further, formulated production medium with 1.5% colloidal chitin, 1.25% fructose greatly influenced the chitinase production. At all described optimum conditions with formulated production media, a total of 14.30-fold increment was achieved in the chitinase production with final activity of 1210.67?IU when compared to the initial fermentation conditions in basal production medium.  相似文献   

13.
14.
Streptomyces venezuelae P10 could produce extracellular chitinase in a medium containing 0.6% colloidal chitin that was fermented for 96 hours at 30°C. The enzyme was purified to apparent homogeneity with 80% saturation of ammonium sulfate as shown by chitin affinity chromatography and DEAE-cellulose anion-exchange chromatography. Sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) of the enzyme showed a molecular weight of 66 kDa. The chitinase was characterized, and antifungal activity was observed against phytopathogens. Also, the first 15 N-terminal amino-acid residues of the chitinase were determined. The chitin hydrolysed products were N-acetylglucosamine and N, N-diacetylchitobiose.  相似文献   

15.
A fermentation approach utilizing Paenibacillus sp. to process chitin was developed. The chitin obtained from this process is called fermentation-processed chitin (FPC), and it was further investigated with chitinase affinity adsorption studies together with three other adsorbents, i.e. crab shell chitin, colloid chitin, and enzyme-processed chitin. The results showed that FPC had the highest chitinase adsorption capacity. Under 15 °C and pH 5.0, FPC exhibited an optimal chitinase adsorption capacity of 85.9 U/g, which was 61.9% higher than that of the colloidal chitin. With 0.02 M acetic acid as the eluent, a purification-fold of 10.3 with 97% chitinase recovery was obtained. The results of surface morphology studies indicated that the FPC surface was modified to a fiber-like structure with deep pores. In comparison with the surface morphology of enzyme-processed chitin and colloidal chitin, it is inferred that the enhanced adsorption capacity of FPC for chitinase is attributed to both the effects of chitinase hydrolysis and the bacterial modification.  相似文献   

16.
Allosamidin is a family 18 chitinase inhibitor produced by Streptomyces. In its producing strain, Streptomyces sp. AJ9463, allosamidin promotes production of the family 18 chitinase originated from chi65 in a chitin medium through the two-component regulatory system encoded by chi65R and chi65S, which were present at the 5'-upstream region of chi65. In this study, we showed generality of the allosamidin's effect. Allosamidin enhanced production of the family 18 chitinases originated from chi65h of Streptomyces halstedii MF425, another allosamidin producer, chiC of Streptomyces coelicolor A3(2) and chiIII of Streptomyces griseus. All the three chitinase genes had high homology to chi65 and two genes homologous to chi65S and chi65R were present at their 5'-upstream regions. When allosamidin's effect was tested with six Streptomyces strains randomly isolated from soil, allosamidin enhanced chitinase production of all strains. All six strains possessed a set of three genes homologous to chi65, chi65S and chi65R. Analysis of 16S rDNA indicated that allosamidin-sensitive strains are distributed widely in Streptomyces. These observations suggested that allosamidin can affect the common regulatory system for production of a chitinase with a two-component regulatory system in Streptomyces.  相似文献   

17.
A gene encoding an alkaline (pI of 8.67) chitinase was cloned and sequenced from Chromobacterium sp. strain C-61. The gene was composed of 1,611 nucleotides and encoded a signal sequence of 26 N-terminal amino acids and a mature protein of 510 amino acids. Two chitinases of 54 and 52 kDa from both recombinant Escherichia coli and C-61 were detected on SDS-PAGE. Maximum chitinase activity was obtained in the culture supernatant of recombinant E. coli when cultivated in TB medium for 6 days at 37°C and was about fourfold higher than that from C-61. Chi54 from the culture supernatants could be purified by a single step based on isoelectric point. The purified Chi54 had about twofold higher binding affinity to chitin than to cellulose. The chi54 encoded a protein that included a type 3 chitin-binding domain belonging to group A and a family 18 catalytic domain belonging to subfamily A. In the catalytic domain, mutation of perfectly conserved residues and highly conserved residues resulted in loss of nearly all activity, while mutation of nonconserved residues resulted in enzymes that retained activity. In this process, a mutant (T218S) was obtained that had about 133% of the activity of the wild type, based on comparison of K cat values.  相似文献   

18.
产几丁质酶的苏云金杆菌菌株筛选及酶合成条件研究   总被引:11,自引:0,他引:11  
从本室保存的 64株苏云金芽孢杆菌中 ,筛选出一株几丁质酶活力较高的菌株WB 50。产酶条件研究表明 :在pH 7.0的基础培养基中添加 2 .0 %的细粉几丁质 ,1.0 %的酵母膏 ,2 2 0rpm 30℃下培养 72小时 ,几丁质酶的产出最大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号