首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of various abiotic stresses on germination rate, growth and soluble sugar content in Sorghum bicolor (L.) Moench cv. CSH 6 seed embryos and endosperm during early germination was investigated. Under stress conditions germination, water potential and tissue water content decreased markedly. Subsequently, this reduction resulted in marked decreases in fresh weight both in embryos and endosperm. Conversely, a substantial increase in dry weight was observed. Furthermore, a considerable increase in the sugar contents in both embryo and endosperm was detected. The fructose level was always higher than glucose and sucrose in response to various stresses. However, as compared to the control the level of glucose and sucrose was higher in embryos and endosperm after stress treatments. Based upon these results a possible physiological role of sugars in the germination of sorghum seeds is discussed.  相似文献   

2.
Cytokinin activity was determined in dry mature rice seeds,in endosperm and embryo tissues 24, 48 and 72 over imbibitionand in radicles 96 h after germination. Cytokinins with chromatographicproperties similar to zeatin, zeatin riboside, zeatin glucosideand zeatin riboside glucoside were datected in embryo and endosperm,but only the latter two were detected in mature seeds. Cytokininactivity was low during early toges of germination. Qualitativeand quantitative changes in cytokinins were observed in bothembryo and endosperm. The presence of higher cytokinin activityin the endosperm than in the embryo during the first 24 h aftergermination suggests that the endosperm may supply cytokininsuntil the embryo is able to synthaize its own cytokinins. Thepossible significance of high cytokinin glucoside activity inthe embryo early during germination and high cytokinin activityin the radicle during the later stages is discussed. Oryza sativa L., rice, cytokinin, germination, seed  相似文献   

3.
荔枝胚败育过程中内源激素与蛋白质含量的变化   总被引:4,自引:0,他引:4  
连续3年(1999-2001年)对典型的荔枝焦核品种桂味、糯米糍和大核品种黑叶、怀枝花后10-40d的幼胚和胚乳内源激素、多酚含量及蛋白质动态变化进行研究。结果表明,焦核品种幼胚及胚乳中的IAA、GAs和ABA含量低于大核品种;多酚类物质含量在胚中低于大核品种,胚乳中则高于大核品种;胚和胚乳中的蛋白质含量均低于大核品种。蛋白质电泳结果显示,22.5、28.5和45kD这3类蛋白质在怀枝和黑叶的胚蛋白质代谢过程中表现出较高的稳定性,桂味和糯米糍胚蛋白质中的28.5kD蛋白质也有相似的特性。  相似文献   

4.
Seeds of rice variety ‘Chinsurah Boro’ were treatedwith two concentrations of indoleacetic acid (IAA) and maleichydrazide (MH), 0.1 mg. per litre and 0.01 mg. per litre, duringthe first 7 days of germination, and the resulting changes innitrogen metabolism of both endosperm and embryo were determined.The seedling growth at different times during the treatmentwas recorded. Uptake of water by the embryo increased up to 72 hours, butthereafter the percentage water content fell, owing to large-scaletranslocation of dry matter to it. The endosperm showed increasingwater content for 5 days. There are two marked stages of nitrogen metabolism of the seedduring germination. During the first 72 hours hydrolysis ofprotein in the endosperm and translocation of soluble nitrogento the embryo are the predominant features. Thereafter the embryoactively synthesizes protein from the products of translocation. IAA and MH affected the seedling growth similarly. Initiallythere was a small retardation of leaf growth, but at later periodsrecovery took place. Root growth was more adversely affectedthan shoot growth, the effect also persisting longer. Thesechanges in growth were reflected in the nitrogen metabolismof the seedlings. For the first few days IAA and MH retardedthe supply of soluble nitrogen from the endosperm to the embryo,consequently there was less soluble nitrogen in the embryo thoughprotein synthesis there was affected only slightly. The differencein soluble nitrogen between the treated and untreated embryospersisted throughout the seven days. An attempt is made to explainthis on the basis that primarily IAA and MH retard the enzymaticactivity responsible for the hydrolysis of protein in the endosperm.  相似文献   

5.
Endosperm mutants are critical to the studies on both starch synthesis and metabolism and genetic improvement of starch quality in maize. In the present study, a novel maize endosperm mutant A0178 of natural variation was used as the experimental material and identified and then characterized. Through phenotypic identification, genetic analysis, main ingredients measurement and embryo rescue, development of genetic mapping population from A0178, the endosperm mutant gene was located. The results showed that the mutant exhibited extremely low germination ability as attributed to the inhibited embryo development, and amounts of sugars were accumulated in the mutant seeds and more sugars content was detected at 23 days after pollination (DAP) in A0178 than B73. Employing genetic linkage analysis, the mutant trait was mapped in the bin 5.04 on chromosome 5. Sequence analysis showed that two sites of base transversion and insertion presented in the protein coding region and non-coding region of the mutant brittle-1 (bt1), the adenylate translocator encoding gene involved in the starch synthesis. The single base insertion in the coding region cause frameshift mutation, early termination and lose of function of Brittle-1 (BT1). All results suggested that bt1 is a novel allelic gene and the causal gene of this endosperm mutant, providing insights on the mechanism of endosperm formation in maize.  相似文献   

6.
Thioredoxin and germinating barley: targets and protein redox changes   总被引:21,自引:0,他引:21  
Marx C  Wong JH  Buchanan BB 《Planta》2003,216(3):454-460
The endosperm and embryo of barley ( Hordeum vulgare L.) grain were investigated to relate thioredoxin h and disulfide changes to germination and seedling development. The disulfide proteins of both tissues were found to undergo reduction following imbibition. Reduction reached a peak 1 day earlier in the embryo than in the endosperm, day 1 vs. day 2. The profile in both cases resembled those observed with wheat and rice, i.e., the reduction of the storage proteins increased initially and then declined during the period of seedling growth. The extent of the increase in reduction observed with barley endosperm was, however, less pronounced than with the other cereals. Also, unlike wheat and rice, the storage proteins of the endosperm were highly reduced in the dry seed and the sulfhydryl content of glutelins showed no appreciable change during this period. The relative abundance of thioredoxin h during germination and early seedling growth differed in the embryo and endosperm: a progressive decrease in the endosperm (as seen with wheat) vs. an increase in the embryo. Thioredoxin h was found in the major seed tissues in characteristic forms. Three forms were found in the scutellum and aleurone, whereas two, which may represent isoforms, were identified in the root and the shoot. Using a recently developed strategy based on two-dimensional gel electrophoresis, several proteins were identified as specific targets for thioredoxin in the embryo following oxidation with H(2)O(2), among them barley embryo globulin 1, peroxiredoxin and acidic ribosomal protein P(3). The results confirm earlier findings with the endosperm of other cereals and extend the importance of thioredoxin-linked redox change to the germinating embryo for functions that potentially include dormancy, protection against reactive oxygen species, translation and the mobilization of storage proteins.  相似文献   

7.
Moussavi-Nik  M.  Rengel  Z.  Pearson  J.N.  Hollamby  G. 《Plant and Soil》1997,197(2):271-280
The changes in nutrient content of grain tissues and seedling parts of two wheat genotypes (Triticum aestivum L., Excalibur and Janz) with low or high seed Zn content were followed from imbibition to early seedling development (12 days). The grains were separated into seed coat, endosperm and embryo, while the seedlings were separated into roots and shoots. The dry weight of the seed coat did not change throughout the experimental period, whereas the endosperm weight declined rapidly from day 4 onward. The weight of embryo did not show any difference between and within cultivars. About a half of seed Zn was remobilised into shoot and roots during 12 days of growth, regardless of the initial seed Zn content in both genotypes. The seed coat contained 55–77% of the total seed nutrients in the two wheat genotypes, except in the case of S (around 40%). Manganese, Fe, Ca, K, and P were remobilised effectively from the seed coat as well as from the endosperm, while remobilisation of Zn and Cu was relatively less from the seed coat than from the endosperm. After 10 days of growth, all nutrients monitored were completely remobilised from the endosperm. Remobilised K was directed primarily into shoots; an increase in K content in shoots was relatively higher than the accumulation of dry matter, with a consequent increase in K concentration in shoot tissue. The remobilisation of some nutrients (eg. Fe, Ca and Zn) from various grain tissues during inbibition, germination and early growth is different from the remobilisation in more mature plants.  相似文献   

8.
The tripeptide antioxidant glutathione (γ-l-glutamyl-l-cysteinyl-glycine; GSH) essentially contributes to thiol-disulphide conversions, which are involved in the control of seed development, germination, and seedling establishment. However, the relative contribution of GSH metabolism in different seed structures is not fully understood. We studied the GSH/glutathione disulphide (GSSG) redox couple and associated low-molecular-weight (LMW) thiols and disulphides related to GSH metabolism in bread wheat (Triticum aestivum L.) seeds, focussing on redox changes in the embryo and endosperm during germination. In dry seeds, GSH was the predominant LMW thiol and, 15?h after the onset of imbibition, embryos of non-germinated seeds contained 12 times more LMW thiols than the endosperm. In germinated seeds, the embryo contained 17 and 11 times more LMW thiols than the endosperm after 15 and 48?h, respectively. This resulted in the embryo having significantly more reducing half-cell reduction potentials of GSH/GSSG and cysteine (Cys)/cystine (CySS) redox couples (EGSSG/2GSH and ECySS/2Cys, respectively). Upon seed germination and early seedling growth, Cys and CySS concentrations significantly increased in both embryo and endosperm, progressively contributing to the cellular LMW thiol-disulphide redox environment (Ethiol-disulphide). The changes in ECySS/2Cys could be related to the mobilisation of storage proteins in the endosperm during early seedling growth. We suggest that EGSSG/2GSH and ECySS/2Cys can be used as markers of the physiological and developmental stage of embryo and endosperm. We also present a model of interaction between LMW thiols and disulphides with hydrogen peroxide (H2O2) in redox regulation of bread wheat germination and early seedling growth.  相似文献   

9.
Seed water content is high during early development of tomato seeds (10–30 d after pollination (DAP)), declines at 35 DAP, then increases slightly during fruit ripening (following 50 DAP). The seed does not undergo maturation drying. Protein content during seed development peaks at 35 DAP in the embryo, while in the endosperm it exhibits a triphasic accumulation pattern. Peaks in endosperm protein deposition correspond to changes in endosperm morphology (i.e. formation of the hard endosperm) and are largely the consequence of increases in storage proteins. Storage-protein deposition commences at 20 DAP in the embryo and endosperm; both tissues accumulate identical proteins. Embryo maturation is complete by 40 DAP, when maximum embryo protein content, size and seed dry weight are attained. Seeds are tolerant of premature drying (fast and slow drying) from 40 DAP.Thirty-and 35-DAP seeds when removed from the fruit tissue and imbibed on water, complete germination by 120 h after isolation. Only seeds which have developed to 35 DAP produce viable seedlings. The inability of isolated 30-DAP seed to form viable seedlings appears to be related to a lack of stored nutrients, since the germinability of excised embryos (20 DAP and onwards) placed on Murashige and Skoog (1962, Physiol. Plant. 15, 473–497) medium is high. The switch from a developmental to germinative mode in the excised 30- and 35-DAP imbibed seeds is reflected in the pattern of in-vivo protein synthesis. Developmental and germinative proteins are present in the embryo and endosperm of the 30- and 35-DAP seeds 12 h after their isolation from the fruit. The mature seed (60 DAP) exhibits germinative protein synthesis from the earliest time of imbibition. The fruit environment prevents precocious germination of developing seeds, since the switch from development to germination requires only their removal from the fruit tissue.Abbreviations DAP days after pollination - kDa kilodaltons - SP1-4 storage proteins 1–4 - SDS-PAGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis - HASI hours after seed isolation - MS medium Murashige and Skoog (1962) medium This work is supported by National Science and Engineering Research Council of Canada grant A2210 to J.D.B.  相似文献   

10.
The pattern of the activity of arginine decarboxylase (ADC) and omithine decarboxylase (ODC) involved in polyamine synthesis in ripening wheat seeds was examined. The aim was to study the polyamines and the activity of the two enzymes in correlation with the growth processes occurring in the developing wheat seeds. The results obtained showed a very different pattern of polyamine content in the two organs of caryopsis, and that the two enzymes in the embryos have a higher activity than in the endosperms. Moreover, while in the embryos the ADC exhibits higher activity than the ODC, in the endosperms the activity of ODC is about similar to that of ADC. This pattern is discussed in relation to the different histological characteristics of embryo and endosperm tissues during seed development.  相似文献   

11.
水稻胚与胚乳分化发育中的内源多胺   总被引:1,自引:0,他引:1  
稻胚发育过程中,其内源多胺以腐胺、亚精胺为主。在幼胚分化期,腐胺和亚精胺的含量很高;幼胚分化完成时,其含量急剧下降;直至分化后期才趋稳定。在胚及胚乳发育时期,还出现一种未知多胺X_(22),其含量除在胚分化完成时较少外,在胚发育的其他各期中,含量则一直很高。DNA和蛋白质含量的变化,从分化期开始递增直至物质积累成熟期,其趋势均相同。多胺可能参与胚与胚乳中核酸和蛋白质合成的调节。  相似文献   

12.
山仑 《西北植物学报》1996,16(3):203-207
以高梁杂交种晋杂86-1为材料研究了种子吸水萌动过程中胚与胚乳两部分的水分状况及可溶性糖变化的过程。结果表明:在吸水萌动过程中种胚和胚乳在水分及糖代谢方面具有不同的特点。  相似文献   

13.
Myrigalone A (MyA) is a rare flavonoid in fruit leachates of Myrica gale, a deciduous shrub adapted to flood-prone habitats. As a putative allelochemical it inhibits seed germination and seedling growth. Using Lepidium sativum as a model target species, experiments were conducted to investigate how environmental cues modulate MyA's interference with key processes of seed germination. Time course analyses of L. sativum testa and endosperm rupture under different light conditions and water potentials were combined with quantifying testa permeability, endosperm weakening, tissue-specific gibberellin (GA) and abscisic acid (ABA) contents, as well as embryo growth and apoplastic superoxide production important for cell expansion growth. Lepidium sativum testa permeability and early water uptake by imbibition is enhanced by MyA. During late germination, MyA inhibits endosperm weakening and embryo growth, both processes required for endosperm rupture. Inhibition of embryo cell expansion by MyA depends on environmental cues, which is evident from the light-modulated severity of the MyA-mediated inhibition of apoplastic superoxide accumulation. Several important key weakening and growth processes during early and late germination are targets for MyA. These effects are modulated by light conditions and ambient water potential. It is speculated that MyA is a soil seed bank-destroying allelochemical that secures the persistence of M. gale in its flood-prone environment.  相似文献   

14.
A barley cDNA macroarray comprising 1,440 unique genes was used to analyze the spatial and temporal patterns of gene expression in embryo, scutellum and endosperm tissue during different stages of germination. Among the set of expressed genes, 69 displayed the highest mRNA level in endosperm tissue, 58 were up-regulated in both embryo and scutellum, 11 were specifically expressed in the embryo and 16 in scutellum tissue. Based on Blast X analyses, 70% of the differentially expressed genes could be assigned a putative function. One set of genes, expressed in both embryo and scutellum tissue, included functions in cell division, protein translation, nucleotide metabolism, carbohydrate metabolism and some transporters. The other set of genes expressed in endosperm encodes several metabolic pathways including carbohydrate and amino acid metabolism as well as protease inhibitors and storage proteins. As shown for a storage protein and a trypsin inhibitor, the endosperm of the germinating barley grain contains a considerable amount of residual mRNA which was produced during seed development and which is degraded during early stages of germination. Based on similar expression patterns in the endosperm tissue, we identified 29 genes which may undergo the same degradation process. Electronic Publication  相似文献   

15.
本文利用和胚乳遗传模型[研究了水稻早期胚后生长生物量性状的遗传控制,结果表明:在两个时期水稻幼苗生物量性状中,除了第16天时根鲜重(RFW)主要受到胚乳显性效应控制外,叶鲜重(LFW),叶干重(LDW),根干重(RDW)主要受到胚基因显性效应和胚乳基因加性效应的控制,胚加性和乳乳加性效应占总遗传方差的40-54%,说明对生物量性状进行早期选择有效,各个性状都检测到显著的胚狭义遗传率和胚乳狭义遗传率,说明在早期世代即可估计选择进程,对亲本的遗传效应值的预测表明,对根部性状的选择在第8天进行比较合适,并以亲本P1,P3和P6较好,它们既可提高RFW又可提高RDW,而对地上部分性状的选择在第16天时进行比较合适,并以P4,P9和P10为最好。  相似文献   

16.
Seeds age during storage, resulting in a decline in germination and seedling quality. Seed quality tests are important to monitor this decline. However, such tests are usually destructive and require large seed numbers and long time. For coffee seeds the standard germination test and assessment of seedling quality takes 30 days. Biospeckle has been used previously as a non‐destructive optical tool to monitor biological activity in a range of tissues. Biospeckle was applied 3–6 days after imbibition (DAI) to investigate an association with coffee seedling quality after 30 days. Two distinct areas of biospeckle activity were demonstrated, concurring with the locations of the embryonic axis and the cotyledons in the apical and central seed parts, respectively. Moisture content analysis revealed that embryos of imbibed seeds contained more water than endosperm. Different areas within the endosperm did not differ in moisture content, while the moisture content of the axis was higher than that of the cotyledons, and this did not change from 4 DAI. Therefore, it was concluded that high biospeckle activity was not the result of increased water content in any seed part, but more likely of growth and metabolism in the axis and cotyledons, which had been described previously. A threshold biospeckle ratio apical : central of 1.02 after 6 days distinguished between seeds that produced dead and viable seedlings after 30 days and provided similar results as a tetrazolium test, a widely acknowledged but destructive test for seed quality. Thus, biospeckle data provided a non‐destructive early parameter for seedling quality, based on embryo growth during germination.  相似文献   

17.
Conifer somatic embryo germination and early seedling growth are fundamentally different than in their zygotic counterparts in that the living maternal megagametophyte tissue surrounding the embryo is absent. The megagametophyte contains the majority of the seed storage reserves in loblolly pine and the lack of the megagametophyte tissue poses a significant challenge to somatic embryo germination and growth. We investigated the differences in seed storage reserves between loblolly pine mature zygotic embryos and somatic embryos that were capable of germination and early seedling growth. Somatic embryos utilized in this study contained significantly lower levels of triacylglycerol and higher levels of storage proteins relative to zygotic embryos. A shift in the ratio of soluble to insoluble protein present was also observed. Mature zygotic embryos had roughly a 3:2 ratio of soluble to insoluble protein whereas the somatic embryos contained over 5-fold more soluble protein compared to insoluble protein. This indicates that the somatic embryos are not only producing more protein overall, but that this protein is biased more heavily towards soluble protein, indicating possible differences in metabolic activity at the time of desiccation.  相似文献   

18.
19.
The mechanism and regulation of coffee seed germination were studied in Coffea arabica L. cv. Rubi. The coffee embryo grew inside the endosperm prior to radicle protrusion and abscisic acid (ABA) inhibited the increase in its pressure potential. There were two steps of endosperm cap weakening. An increase in cellulase activity coincided with the first step and an increase in endo--mannanase (EBM) activity with the second step. ABA inhibited the second step of endosperm cap weakening, presumably by inhibiting the activities of at least two EBM isoforms and/or, indirectly, by inhibiting the pressure force of the radicle. The increase in the activities of EBM and cellulase coincided with the decrease in the force required to puncture the endosperm and with the appearance of porosity in the cell walls as observed by low-temperature scanning electronic microscopy. Tissue printing showed that EBM activity was spatially regulated in the endosperm. Activity was initiated in the endosperm cap whereas later during germination it could also be detected in the remainder of the endosperm. Tissue printing revealed that ABA inhibited most of the EBM activity in the endosperm cap, but not in the remainder of the endosperm. ABA did not inhibit cellulase activity. There was a transient rise in ABA content in the embryo during imbibition, which was likely to be responsible for slow germination, suggesting that endogenous ABA also may control embryo growth potential and the second step of endosperm cap weakening during coffee seed germination.  相似文献   

20.
Salicylhydroxamic acid (SHAM) stimulated germination of photosensitive lettuce (Lactuca sativa L. cv Waldmann's Green) seeds in darkness. To determine whether SHAM acts on the embryo or the endosperm, we investigated separately effects of SHAM on growth potential of isolated embryos as well as on endosperm strength. Embryo growth potential was quantified by incubating decoated embryos in various concentrations of osmoticum and measuring subsequent radicle elongation. Growth potential of embryos isolated from seeds pretreated with 4 millimolar SHAM was equal to that of untreated controls. Rupture strength of endosperm tissue excised from seeds pretreated with SHAM was 33% less than that of controls in the micropylar region. To determine if the embryo must be in contact with the endosperm for SHAM to weaken the endosperm, some endosperms were incubated with SHAM only after dissection from seeds. Rupture strength of SHAM-treated, isolated endosperms in the micropylar region was 25% less than that of untreated controls. There was no difference in rupture strength in the cotyledonary region of endosperm isolated from seeds treated with SHAM in buffer or buffer alone. SHAM therefore stimulates germination not by enhancing embryo growth potential, but by weakening the micropylar region of the endosperm enclosing the embryo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号