首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
L-Tryptophan (L-Trp) is an essential amino acid. It is widely used in medical, health and food products, so a low-cost supply is needed. There are 4 methods for L-Trp production: chemical synthesis, extraction, enzymatic synthesis, and fermentation. In this study, we produced a recombinant bacterial strain pET-tnaA of Escherichia coli which has the L-tryptophanase gene. Using the pET-tnaA E. coli and the strain TS1138 of Pseudomonas sp., a one-pot enzymatic synthesis of L-Trp was developed. Pseudomonas sp. TS1138 was added to a solution of D,L-2-amino-Δ2-thiazoline-4-carboxylic acid (DL-ATC) to convert it to L-cysteine (L-Cys). After concentration, E. coli BL21 (DE 3) cells including plasmid pET-tnaA, indole, and pyridoxal 5’-phosphate were added. At the optimum conditions, the conversion rates of DL-ATC and L-Cys were 95.4% and 92.1%, respectively. After purifying using macroporous resin S8 and NKA-II, 10.32 g of L-Trp of 98.3% purity was obtained. This study established methods for one-pot enzymatic synthesis and separation of L-Trp. This method of producing L-Trp is more environmentally sound than methods using chemical synthesis, and it lays the foundations for industrial production of L-Trp from dl-ATC and indole.  相似文献   

2.
Two novel genes (tsB, tsC) involved in the conversion of DL-2-amino-Delta2-thiazoline-4-carboxylic acid (DL-ATC) to L-cysteine through S-carbamyl-L-cysteine (L-SCC) pathway were cloned from the genomic DNA library of Pseudomonas sp. TS1138. The recombinant proteins of these two genes were expressed in Escherichia coli BL21, and their enzymatic activity assays were performed in vitro. It was found that the tsB gene encoded an L-ATC hydrolase, which catalyzed the conversion of L-ATC to L-SCC, while the tsC gene encoded an L-SCC amidohydrolase, which showed the catalytic ability to convert L-SCC to L-cysteine. These results suggest that tsB and tsC play important roles in the L-SCC pathway and L-cysteine biosynthesis in Pseudomonas sp. TS1138, and that they have potential applications in the industrial production of L-cysteine.  相似文献   

3.
The newly isolated strain Pseudomonas sp. ON-4a converts D,L-2-amino-delta2-thiazoline-4-carboxylic acid to L-cysteine via N-carbamoyl-L-cysteine. A genomic DNA fragment from this strain containing the gene(s) encoding enzymes that convert D,L-2-amino-delta2-thiazoline-4-carboxylic acid into L-cysteine was cloned in Escherichia coli. Transformants expressing cysteine-forming activity were selected by growth of an E. coli mutant defective in the cysB gene. A positive clone, denoted CM1, carrying the plasmid pCM1 with an insert DNA of approximately 3.4 kb was obtained, and the nucleotide sequence of a complementing region was analyzed. Analysis of the sequence found two open reading frames, ORF1 and ORF2, which encoded proteins of 183 and 435 amino acid residues, respectively. E. coli DH5alpha harboring pTrCM1, which was constructed by inserting the subcloned sequence into an expression vector, expressed two proteins of 25 kDa and 45 kDa. From the analyses of crude extracts of E. coli DH5alpha carrying deletion derivatives of pTrCM1 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and by enzymatic activity, it was found that the 25-kDa protein encoded by ORF1 was the enzyme L-2-amino-delta2-thiazoline-4-carboxylic acid hydrolase, which catalyzes the conversion of L-2-amino-delta2-thiazoline-4-carboxylic acid to N-carbamoyl-L-cysteine, and that the 45-kDa protein encoded by ORF2 was the enzyme N-carbamoyl-L-cysteine amidohydrolase, which catalyzes the conversion of N-carbamoyl-L-cysteine to L-cysteine.  相似文献   

4.
酶法转化DL-ATC合成L-半胱氨酸的酶促反应条件研究   总被引:1,自引:0,他引:1  
目的:考察酶源保存方式、酶促反应时间、底物pH值、底物浓度、酶浓度、金属离子等因素对酶活力的影响。方法:以假单胞菌(Pseudomonassp.)TS1138为供试菌株,采用酸式茚三酮法测定L-半胱氨酸含量,研究了酶法转化DL-ATC合成L-半胱氨酸的酶促反应条件。结果:TS1138菌株中L-半胱氨酸脱巯基酶具有较高的活性,而且Mg2 、Mn2 、Fe2 、Zn2 、Cu2 等5种金属离子对DL-ATC水解酶酶系有不同程度的抑制,其中Cu2 对该酶系的抑制作用很大。结论:确定了TS1138菌株酶法转化DL-ATC合成L-半胱氨酸的最适酶促反应条件,为酶促反应动力学的研究奠定了基础。  相似文献   

5.
DL-2-amino-Delta(2)-thiazolin-4-carbonic acid (DL-ATC) is a substrate for cysteine synthesis in some bacteria, and this bioconversion has been utilized for cysteine production in industry. We cloned a DNA fragment containing the genes involved in the conversion of L-ATC to L-cysteine from Pseudomonas sp. strain BS. The introduction of this DNA fragment into Escherichia coli cells enabled them to convert L-ATC to cysteine via N-carbamyl-L-cysteine (L-NCC) as an intermediate. The smallest recombinant plasmid, designated pTK10, contained a 2.6-kb insert DNA fragment that has L-cysteine synthetic activity. The nucleotide sequence of the insert DNA revealed that two open reading frames (ORFs) encoding proteins with molecular masses of 19.5 and 44.7 kDa were involved in the L-cysteine synthesis from DL-ATC. These ORFs were designated atcB and atcC, respectively, and their gene products were identified by overproduction of proteins encoded in each ORF and by the maxicell method. The functions of these gene products were examined using extracts of E. coli cells carrying deletion derivatives of pTK10. The results indicate that atcB and atcC are involved in the conversion of L-ATC to L-NCC and the conversion of L-NCC to cysteine, respectively. atcB was first identified as a gene encoding an enzyme that catalyzes thiazolin ring opening. AtcC is highly homologous with L-N-carbamoylases. Since both enzymes can only catalyze the L-specific conversion from L-ATC to L-NCC or L-NCC to L-cysteine, it is thought that atcB and atcC encode L-ATC hydrolase and N-carbamyl-L-cysteine amidohydrolase, respectively.  相似文献   

6.
In this study, a high efficiency immunomagnetic affinity matrix was developed to eliminate L-cysteine desulfhydrase (CD), which decomposes L-cysteine, in crude enzyme extracts from Pseudomonas sp. TS1138. After cloning and expression in Escherichia coli, recombinant CD was purified to raise polyclonal antibodies from mice. The anti-CD antibody was cross-linked to staphylococcal protein A-magnetic cellulose microspheres (MCMS) with dimethyl pimelimidate (DMP). The natural CD was eliminated from the crude enzyme extracts by treatment with the cross-linked antibody-protein A-MCMS, resulting in a high level of L-cysteine production. The conversion rate of DL-2-amino-Delta2-thiazoline-4-carboxylic acid (DL-ATC) to L-cysteine increased significantly from 61.9 to 96.2%. The cross-linked antibody-protein A-MCMS showed its durability after repetitive use, maintaining a constant binding capacity for CD during five cycles. This study may lead to a convenient and cost-efficient method to produce L-cysteine by enzymatic conversions.  相似文献   

7.
L-cysteine desulthydrase (CD) plays an important role in L-cysteine decomposition.To identify the CD gene in Pseudomonas sp.TS 1138 and investigate its effect on the L-cysteine biosynthetic pathway,the CD gene was cloned from Pseudomonas sp.TS 1138 by polymerase chain reaction (PCR) method.The nucleotide sequence of CD gene was determined to be 1,215 bp,and its homology with other sequences encoding CD was analyzed.Then the CD gene was subcloned into pET-21a(+) vector and expressed in Escherichia coli (E.coli) by isopropyl-β-D-thiogalactopyranoside (IPTG) inducement.The recombinant CD was purified by Ni-NTA His-Bind resin,and its activity was identified by the CD activity staining.The enzymatic properties of the recombinant CD were characterized and its critical role involved in the L-cysteine biosynthetic pathway was also discussed.  相似文献   

8.
对以DL-2-氨基-?2-噻唑啉-4-羧酸(DL-2-amino-?2-thiazoline-4-carboxylic acid, DL-ATC)为底物原料, 经微生物酶法催化合成L-半胱氨酸, 并进一步氧化和分离纯化产物L-胱氨酸的生产工艺和条件进行了研究。建立了以恶臭假单胞菌TS1138 (Pseudomonas putida TS1138)全细胞为酶源, 反复多次催化底物合成L-半胱氨酸, 并以2.0%二甲基亚砜(DMSO)为氧化剂氧化生成L-胱氨酸, 进而通过001×7型阳离子交换树脂纯化胱氨酸的新工艺。采用高效液相色谱法考察该方法L-胱氨酸的总收率可以达到78.55%, 纯度为99.12%。该方法简单高效, 解决了酶稳定性差不能重复使用, 而固定化酶方法繁琐成本高的问题, 为我国L-半胱氨酸和L-胱氨酸的生产开辟一条新途径。  相似文献   

9.
恶臭假单胞菌TS1138转化生产L-胱氨酸的工艺研究   总被引:4,自引:1,他引:3  
对以DL-2-氨基-△2-噻唑啉-4-羧酸(DL-2-amino-△2-thiazoline-4-carboxylic acid,DL-ATC)为底物原料,经微生物酶法催化合成L-半胱氨酸,并进一步氧化和分离纯化产物L-胱氨酸的生产工艺和条件进行了研究.建立了以恶臭假单胞菌TS1138(Pseudomonas putida TS1138)全细胞为酶源,反复多次催化底物合成L-半胱氨酸,并以2.0%二甲基亚砜(DMSO)为氧化剂氧化生成L-胱氨酸,进而通过001×7型阳离子交换树脂纯化胱氨酸的新工艺.采用高效液相色谱法考察该方法L-胱氨酸的总收率可以达到78.55%,纯度为99.12%.该方法简单高效,解决了酶稳定性差不能重复使用,而固定化酶方法繁琐成本高的问题,为我国L-半胱氨酸和L-胱氨酸的生产开辟一条新途径.  相似文献   

10.
We have determined the nucleotide sequence of the gene encoding thermostable L-2-halo acid dehalogenase (L-DEX) from the 2-chloroacrylate-utilizable bacterium Pseudomonas sp. strain YL. The open reading frame consists of 696 nucleotides corresponding to 232 amino acid residues. The protein molecular weight was estimated to be 26,179, which was in good agreement with the subunit molecular weight of the enzyme. The gene was efficiently expressed in the recombinant Escherichia coli cells: the amount of L-DEX corresponds to about 49% of the total soluble proteins. The predicted amino acid sequence showed a high level of similarity to those of L-DEXs from other bacterial strains and haloacetate dehalogenase H-2 from Moraxella sp. strain B (38 to 57% identity) but a very low level of similarity to those of haloacetate dehalogenase H-1 from Moraxella sp. strain B (10%) and haloalkane dehalogenase from Xanthobacter autotrophicus GJ10 (12%). By searching the protein amino acid sequence database, we found two E. coli hypothetical proteins similar to the Pseudomonas sp. strain YL L-DEX (21 to 22%).  相似文献   

11.
Thiocoraline is a thiodepsipeptide antitumor agent that belongs to the family of bisintercalator natural products that bind duplex DNA through their two planar intercalating moieties. In thiocoraline, the 3-hydroxyquinaldic acid (3HQA) chromophores required for intercalation are derived from L-Trp. We have expressed the Micromonospora sp. ML1 tryptophan 2,3-dioxygenase(TDO) TioF, purified it from E. coli, and confirmed its role in the irreversible oxidation of L-Trp to N-formylkynurenine, the proposed first step during 3HQA biosynthesis. We have established that TioF is a catalyst with broader specificity than other TDOs, but that is less promiscuous than indoleamine 2,3-dioxygenases. TioF was found to display activity with various L-Trp analogs (serotonin, D-Trp, and indole). The TioF reaction products generated during this study will be used as substrates for subsequent analysis of the other enzymes involved in 3HQA biosynthesis.  相似文献   

12.
At 5 mM Mg2+, spermidine stimulation of polyphenylalanine synthesis by cell-free extracts of Escherichia coli was found to be about 30 times greater than that by extracts of Pseudomonas sp. strain Kim, a unique organism which lacks detectable levels of spermidine. By means of reconstitution experiments, the target of spermidine stimulation was localized to the protein fraction of the highspeed supernatant component (S-100) of E. coli and was absent from, or deficient in, the S-100 fraction of Pseudomonas sp. strain Kim. The spermidine stimulation did not appear to be due to the presence in the E. coli S-100 fraction of ribosomal protein S1, elongation factors, or E. coli aminoacyl-tRNA synthetases. The failure to observe spermidine stimulation by the Pseudomonas sp. strain Kim S-100 fraction was also not due to a spermidine-enhanced polyuridylic acid degradation. The synthesis of polyphenylalanine by Pseudomonas sp. strain Kim extracts was stimulated by putrescine and by S-(+)-2-hydroxyputrescine to a greater degree than was synthesis by E. coli extracts. The enhancement by putrescine and by S-(+)-2-hydroxyputrescine with Pseudomonas sp. strain Kim extracts was found to be due to effects on its ribosomes.  相似文献   

13.
Enzymatic production of L-tryptophan from DL-serine and indole by a coupled reaction of tryptophan synthase and amino acid racemase was studied. The tryptophan synthase (EC 4.2.1.20) of Escherichia coli catalyzed beta-substitution reaction of L-serine into L-tryptophan and the amino acid racemase (EC 5.1.1.10) of Pseudomonas putida catalyzed the racemization of D-serine simultaneously in one reactor. Under optimal conditions established for L-tryptophan production, a large-scale production of L-tryptophan was carried out in a 200-liter reactor using intact cells of E. coli and P. putida. After 24 h of incubation with intermittent indole feeding, 110 g liter-1 of L-tryptophan was formed in molar yields of 91 and 100% for added DL-serine and indole, respectively. Continuous production of L-tryptophan was also carried out using immobilized cells of E. coli and P. putida. The maximum concentration of L-tryptophan formed was 5.2 g liter-1 (99% molar yield for indole), and the concentration decreased to 4.2 g liter-1 after continuous operation for 20 days.  相似文献   

14.
利用PCR技术以Pseudomonas sp. B3-1基因组DNA为模板,扩增出2.9kb编码苯甲酸双加氧酶基因簇benABC。将该基因簇连接于pLAFRJ载体,电转化至E.coli DH5α,再通过三亲本结合法导入野生菌株Pseudomonas sp. B3-1中,得到了一株邻苯二酚产量提高的基因工程菌,命名为Pseudomonas sp.B4。发酵条件优化表明,当苯甲酸钠浓度为6.0 g/L,聚蛋白胨浓度为2.0 g/L,温度为32℃以及pH值为6.0时,工程菌在200rpm旋转摇床发酵36小时后,邻苯二酚产量达到0.7 mg/ml,比优化前提高了20%。  相似文献   

15.
The ability of selected bacterial cultures to synthesize ethylene during growth in nutrient broth supplemented with methionine or 2-oxo-4-methylthiobutyric acid (KMBA) was examined. Although most cultures transformed KMBA into ethylene, only those of Escherichia coli SPAO and Chromobacterium violaceum were able to convert exogenously added methionine to ethylene. In chemically defined media, E. coli SPAO produced the highest amounts of ethylene from methionine and KMBA. This capability was affected by the nature of the carbon source and the type and amount of nitrogen source used for growth. When glutamate was used as sole source of carbon and nitrogen for growth, the activity of the ethylenogenic enzymes was reduced to 25% of that observed with cultures grown with glucose and NH4Cl. Neither methionine nor KMBA significantly affected the ethylenogenic capacity of E. coli SPAO. Menadione and paraquat, compounds that generate superoxide radicals, stimulated ethylene synthesis by harvested cells, but not by cell-free extracts of E. coli SPAO. In addition, cells of Pseudomonas aeruginosa, which produced no ethylene in culture in the presence of exogenously added KMBA, yet possessed the necessary enzymes in an active form, were able to synthesize ethylene from KMBA when incubated with menadione or paraquat.  相似文献   

16.
磷脂酰丝氨酸合成酶基因pss的克隆与表达   总被引:1,自引:0,他引:1  
磷脂酰丝氨酸合成酶能催化转酯反应,是定向合成特定磷脂类物质特别是磷脂酰丝氨酸的工具酶,但出发菌株产量低,很大程度上限制了酶法合成磷脂酰丝氨酸的工业化应用。利用表达载体pET-22b,实现了大肠杆菌磷脂酰丝氨酸合成酶基因在大肠杆菌BL21(DE3)中的同源高效表达。利用镍亲和柱对表达产物进行纯化,并用HPLC法对纯化后的重组酶的活力进行检测。结果表明,目的蛋白可在短时间内进行大量表达,蛋白含量是出发菌株的100倍,同时经6h的转酯反应转化率达到33%,重组磷脂酰丝氨酸合成酶活力达到69U/mg蛋白。  相似文献   

17.
The vaoA gene from Penicillium simplicissimum CBS 170.90, encoding vanillyl alcohol oxidase, which also catalyzes the conversion of eugenol to coniferyl alcohol, was expressed in Escherichia coli XL1-Blue under the control of the lac promoter, together with the genes calA and calB, encoding coniferyl alcohol dehydrogenase and coniferyl aldehyde dehydrogenase of Pseudomonas sp. strain HR199, respectively. Resting cells of the corresponding recombinant strain E. coli XL1-Blue(pSKvaomPcalAmcalB) converted eugenol to ferulic acid with a molar yield of 91% within 15 h on a 50-ml scale, reaching a ferulic acid concentration of 8.6 g liter(-1). This biotransformation was scaled up to a 30-liter fermentation volume. The maximum production rate for ferulic acid at that scale was 14.4 mmol per h per liter of culture. The maximum concentration of ferulic acid obtained was 14.7 g liter(-1) after a total fermentation time of 30 h, which corresponded to a molar yield of 93.3% with respect to the added amount of eugenol. In a two-step biotransformation, E. coli XL1-Blue(pSKvaomPcalAmcalB) was used to produce ferulic acid from eugenol and, subsequently, E. coli(pSKechE/Hfcs) was used to convert ferulic acid to vanillin (J. Overhage, H. Priefert, and A. Steinbüchel, Appl. Environ. Microbiol. 65:4837-4847, 1999). This process led to 0.3 g of vanillin liter(-1), besides 0.1 g of vanillyl alcohol and 4.6 g of ferulic acid liter(-1). The genes ehyAB, encoding eugenol hydroxylase of Pseudomonas sp. strain HR199, and azu, encoding the potential physiological electron acceptor of this enzyme, were shown to be unsuitable for establishing eugenol bioconversion in E. coli XL1-Blue.  相似文献   

18.
【目的】γ-丁基甜菜碱羟化酶是生物体内合成L-肉碱的关键酶。从假单胞菌(Pseudomonas sp.)L-1中克隆γ-丁基甜菜碱羟化酶基因,实现其在大肠杆菌(Escherichia coli)中的高效表达,并对表达产物进行酶学性质分析,为生物转化生产L-肉碱奠定基础。【方法】通过PCR克隆γ-丁基甜菜碱羟化酶基因,并将其开放阅读框(ORF)克隆至融合表达载体pET-15b;表达产物经His.Bind Resin纯化后对BBH进行酶学性质及三维空间结构分析;并以静止细胞进行L-肉碱的转化。【结果】成功地克隆了一个γ-丁基甜菜碱羟化酶基因bbh(GenBank:JQ250036),并实现了其在E.coli中的高效表达。融合蛋白以同源二聚体的形式存在,单个亚基的分子量约46.5 kDa,最适反应温度为30℃,最适反应pH为7.5。该酶在45℃以下稳定。在pH6.0时该酶有最高的pH稳定性。以表达bbh基因的重组大肠杆菌静止细胞转化L-肉碱,L-肉碱产量可达12.7mmol/L。【结论】Pseudomonas sp.L-1γ-丁基甜菜碱羟化酶与现有报道的bbh基因有较大的差异。由该基因表达的γ-丁基甜菜碱羟化酶能有效地转化γ-丁基甜菜碱生成L-肉碱。本研究不仅丰富了γ-丁基甜菜碱羟化酶基因资源,而且为L-肉碱的生物转化提供了一种新的转化方案。  相似文献   

19.
AIMS: To establish multicomponent phenol hydroxylases (mPHs) as novel biocatalysts for producing dyestuffs and hydroxyindoles such as 7-hydroxyindole (7-HI) from indole and its derivatives. METHODS AND RESULTS: We have isolated Pseudomonas sp. KL33, which possesses a phenol degradation pathway similar to that found in Pseudomonas sp. CF600. Pseudomonas sp. KL28 is a strain that can grow on n-alkylphenols as a carbon and energy source. Escherichia coli strains expressing mPH from strain KL28 (mPH(KL28)) and strain KL33 (mPH(KL33)) catalysed the formation of indigo and 7-HI, respectively, from indole. In addition, both mPHs catalysed the production of dyestuffs and hydroxyindoles from indole derivatives. The mPH(KL28) has proved to be one of the most versatile biocatalysts that can accommodate a wide range of indole derivatives for catalysing the formation of dyestuffs. CONCLUSIONS: The present work provides a new approach in producing various dyestuffs and hydroxyindoles from indole and its derivatives by mPHs. SIGNIFICANCE AND IMPACT OF THE STUDY: These results indicate that mPHs may serve as potential agents for organic syntheses as well as bioremediation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号