首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 116 毫秒
1.
建立对体液细胞进行自动捕获的凝集素芯片体系,利用凝集素对糖链的特异亲和作用捕获细胞,提取白血病患者外周血、肺癌胸水和肝腹水中细胞进行荧光标记,凝集素芯片捕获,激光扫描仪检测捕获细胞的荧光信号,常规HE染色后光学显微镜下观察细胞的形态并进行免疫化学反应,流式细胞仪验证凝集素芯片的特异性.结果表明:凝集素芯片可以对体液中的癌细胞进行自动捕获,对癌细胞膜表面糖链进行识别.芯片检测的细胞浓度最少可达每mL10^4个左右.芯片有较好的重复性和特异性.这种凝集素芯片可用于临床体液中癌细胞的检测分析,对癌细胞膜表面凝集素亲和位点进行即时、高通量的检测,为了解细胞膜表面聚糖在癌变过程中的变化提供了一个技术平台.  相似文献   

2.
细胞膜表面糖复合物的糖链结构与肿瘤细胞增殖、侵染、转移等发展过程密切相关.凝集素芯片技术的出现实现了对癌症的糖组进行快速、高通量的检测.通过模式细胞系PANC-1证明了构建的凝集素芯片体系的准确性、重复性、特异性,应用这一芯片体系初步检测了几种癌细胞系(HT-29、SGC-7901、BEL-7402、H460)的膜表面糖链表达.这几种癌细胞系表面都有唾液酸、乙酰葡萄糖/葡萄糖、乙酰半乳糖/半乳糖、甘露糖等糖链.根据实验结果,推测它们的细胞膜表面α1-6岩藻糖链表达水平可能较高,而α1-3岩藻糖链表达水平较低;这些聚糖可能是癌症潜在的标志物.凝集素芯片有助于推动癌细胞膜表面糖链的快速分析和筛选出癌症相关的糖链标志物.  相似文献   

3.
基于凝集素芯片的不同转移潜能肝癌细胞膜蛋白糖谱比较   总被引:1,自引:0,他引:1  
评估采用凝集素芯片技术寻找肝癌细胞表面侵袭和转移相关特征性糖谱的适用性.首先选取一对模式细胞株(中华仓鼠卵巢细胞CHO和其N-乙酰葡萄糖胺转移酶Ⅰ缺陷株Lec1)验证凝集素芯片系统的可靠性.然后通过凝集素芯片比较正常肝细胞L02、非转移肝癌细胞Hep3B、高转移肝癌细胞HCCLM3的细胞表面糖谱,同时采用细胞凝集素组织化学的方法验证芯片结果.细胞Hep3B和L02相比,对凝集素PHA-L、ConA、AAL、MPL的亲和作用增强而对凝集素WGA的亲和作用减弱,提示在肝癌细胞表面可能出现了增多的复杂寡糖分支、高甘露糖、末端岩藻糖、黏蛋白T抗原和减少的N-乙酰葡萄糖胺和/或多价唾液酸结构.细胞HCCLM3和Hep3B相比,对凝集素LCA、MAL-Ⅰ、MAL-Ⅱ、WGA、PHA-E的亲和作用增强而对凝集素RCA-I的亲和作用减弱,提示在高转移肝癌细胞HCCLM3的表面可能出现了增多的核心岩藻糖、唾液酸(主要是α2-3链接方式)、N-乙酰葡萄糖胺、平分型GlcNAc结构以及减少的末端β1-4链接半乳糖结构.细胞凝集素组织化学的结果支持芯片结果.研究证明,凝集素芯片技术是解析生物学进程中糖谱改变的适用工具.  相似文献   

4.
建立了凝集素芯片技术检测糖蛋白的方法,对实验条件进行了优化,应用凝集素芯片初步检测分析了Chang?蒺s liver正常肝细胞总蛋白中的糖蛋白糖链构成.将凝集素ConA、GNA固定于环氧化修饰的玻片表面,用Cy3标记标准糖蛋白RNaseB,利用凝集素识别特异糖链的原理建立凝集素芯片检测糖蛋白的方法.摸索出最佳封闭剂是含1% BSA的磷酸缓冲液,最佳孵育时间及温度为3 h和室温,最佳孵育缓冲液为含1% BSA和0.05% Tween-20的磷酸缓冲液,并用甘露糖抑制实验验证了凝集素芯片结合的特异性.用包含10种凝集素的芯片,成功解析了标准糖蛋白RNaseB、Fetuin的糖链构成,证实了凝集素芯片检测糖蛋白糖链的可行性.最后用凝集素芯片初步检测分析了Chang?蒺s liver正常肝细胞总蛋白中的糖蛋白糖链构成,发现 Chang's liver正常肝细胞总蛋白中的糖蛋白可能有多价 Sia或GlcNAc、terminalα-1,3 mannose、GalNAc、Galβ-1,4GlcNAc这些糖链结构的存在.蛋白质糖基化是一种重要的翻译后修饰,它在微生物感染、细胞分化、肿瘤转移、细胞癌变等生命活动中起着重要作用,因此近年来蛋白质的糖基化研究受到广泛的重视,但由于缺乏一种简便、快速、高通量的检测手段,蛋白质糖基化修饰的研究发展缓慢.凝集素芯片技术的出现实现了对糖蛋白的快速、准确、高通量的检测 分析.  相似文献   

5.
探讨肝癌模型鼠与正常小鼠肝组织B4GalT(β-1,4-半乳糖转移酶)家族mRNA表达差异以及对细胞膜相关糖链的影响.采用RT-PCR方法检测肝癌模型鼠和正常对照小鼠肝癌组织中B4GalT家族7个成员以及唾液酸α-2,3转移酶ST3GalⅢ、ST3GalⅣ、ST3GalⅥ、α-1,6-岩藻糖转移酶FUT8 mRNA表达差异,应用凝集素芯片检测细胞膜表面半乳糖、岩藻糖、唾液酸表达情况.结果显示:与正常对照组相比,肝癌模型鼠肝组织中B4GalT-1和B4GalT-3、ST3GalⅣ和ST3GalⅥ、FUT8呈现高表达,肝癌细胞膜半乳糖、岩藻糖、唾液酸类型糖链增加,提示B4GalT-1和B4GalT-3与肝癌细胞膜半乳糖链增加相关.由于细胞Galβ-1,4-GlcNAc糖表位在ST3GalⅢ、ST3GalⅣ或ST3GalⅥ催化下与唾液酸α-2,3连接生成s-lewis x抗原前体,本实验中B4GalT-1和B4GalT-3与ST3GalⅣ、ST3GalⅤ、FUT8 mRNA表达具有相关性,提示B4GalT-1和B4GalT-3可能与ST3GalⅣ、ST3GalⅥ以及FUT4协同作用,导致肝癌细胞膜半乳糖、岩藻糖、唾液酸类型糖链增加.  相似文献   

6.
血凝素(HA)是位于流感病毒囊膜表面的一种Ⅰ型跨膜糖蛋白,是流感病毒结合宿主细胞表面受体,介导病毒入胞的关键分子,也是中和抗体以及疫苗研制的重要靶标.HA表面糖基化与病毒毒力、感染宿主范围等密切相关,且其表面糖链变化会影响其结构与功能.然而目前关于流感病毒HA糖基化的研究主要集中在其糖基化位点上,而对于HA上详细的糖链结构知之甚少.本文应用禽流感病毒特异识别的唾液酸糖链(SAα2-3Gal)受体,制备特异的糖链磁性微粒复合物,进而从H7N2禽流感病毒中分离纯化HA,并采用SDS-PAGE及质谱技术进行鉴定.确定提取物系HA后,进一步利用凝集素芯片联合质谱技术研究禽流感病毒H7N2的HA表面糖型,结果显示H7N2禽流感病毒HA表面主要含有岩藻糖、半乳糖、N-乙酰半乳糖胺、甘露糖、N-乙酰葡糖胺等糖链结构,共获得16个糖链结构较为准确的寡糖,这些糖链可能与HA生物学功能相关.本研究有助于揭示禽流感病毒感染宿主的糖链作用机制,有助于设计制备针对HA相关的糖链疫苗.  相似文献   

7.
探讨肝癌细胞与正常肝细胞 6 7kD层粘连蛋白受体 (6 7LR)N 糖链结构与功能的差异 .采用流式细胞术检测SMMC 772 1肝癌细胞和L 0 2正常肝细胞膜表面 6 7LR的表达 ,并分别从这 2株细胞分离纯化到高亲和力的 6 7LR ,利用凝集素结合分析其糖链结构 ,并用肽 N 糖苷酶水解N 糖链 ,观察糖链在与层粘连蛋白结合过程中的作用 .结果发现 ,L 0 2细胞膜表面 6 7LR表达的阳性率为5 5 3% ,而SMMC 772 1细胞为 34.7% ,这两株细胞 6 7LR与伴刀豆素 (ConA)的结合能力无显著差异 ,但SMMC 772 1细胞的 6 7LR与麦胚凝集素的结合能力明显高于L 0 2细胞的 6 7LR ,说明 2株细胞 6 7LR的糖链结构存在显著差异 .当N 糖链被切除后 ,SMMC 772 1细胞的 6 7LR与层粘连蛋白的结合能力明显下降 ,而L 0 2细胞则没有变化 .这些资料表明 ,SMMC 772 1肝癌细胞和L 0 2正常肝细胞与层粘连蛋白结合能力的差别 ,以及两株细胞的 6 7LR与层粘连蛋白结合能力的不同 ,很可能是由于这两株细胞的层粘连蛋白受体的N 糖链结构不同所引起  相似文献   

8.
本文采用系列凝集素柱层析法,并配合外切糖苷酶处理研究了在视黄酸(RA)作用1—5天过程中人肝癌细胞株SMMC-7721细胞表面N糖链结构的变化。结果表明,RA促进3~H-甘露糖(Man)参入细胞表面N糖链,使高甘露糖型N糖链的百分比下降,复杂型百分比上升,并促进二天线N糖链的生物合成,使多天线特别是四天线和C_2,C_(21)b三天线N糖链的合成减少。结果提示,N糖链结构的这些变化可能是RA诱导SMMC-7721细胞向正常方向分化的结果。  相似文献   

9.
视黄酸对人肝癌细胞表面N糖链类型及天线数的影响   总被引:1,自引:0,他引:1  
本文采用系列凝集素柱层析法,并配合外切糖苷酶处理研究了在视黄酸作用1-5天过程中人肝癌细胞株SMMC-7721细胞表面N糖结构的变化。结果表明,RA促进^3H-甘露糖参入细胞表面N糖链,使高甘露糖型N糖的百分比下降,复杂型百分比长升,并促进二天线N糖链的生物合成,使多天线特别是四天线和C2,C21b三天线N糖链的合成减少。结果提示,N糖链结构的这些变化可能是RA诱导SMMC-7721细胞向正常方向  相似文献   

10.
岩藻糖糖链与肝癌细胞的迁移作用   总被引:6,自引:2,他引:4  
通过凝集素印迹转移电泳和亲和层析技术,对岩藻糖糖基化蛋白在肝癌细胞中的作用进行了研究.在化学诱发的大鼠肝癌过程中, 分子质量在23 ku到40 ku范围内与荆豆凝集素(UEA)及扁豆凝集素(LCA)结合的岩藻糖糖基化蛋白显著减少, 诱癌至17~20周这些条带重新恢复,而分子质量为80 ku的条带却在诱癌过程中逐周增加.比较高、低转移性肝癌细胞的岩藻糖糖基化蛋白, 发现高转移性肝癌细胞具有多种增强的条带.利用橘果粉胞凝集素(AAL)和LCA亲和层析柱分离了这些岩藻糖基化糖蛋白, 并用这些糖蛋白直接作用于肝癌细胞,发现AAL-糖蛋白具有显著抑制肝癌细胞迁移的作用,迁移细胞数从对照的(100±4.9)%下降到(48.1±2.5)% (P<0.01), LCA-糖蛋白也有类似作用.用胰酶和木瓜蛋白酶水解蛋白质部分后,形成的糖肽抑制肝癌细胞迁移的作用并不改变,甚至增强.此外直接用肝癌转移灶的组织测定了岩藻糖转移酶活性,发现α1,6岩藻糖基转移酶活性显著比正常肝组织高,而α1,3岩藻糖基转移酶活性没有显著的改变.用系列凝集素分析发现这些糖链主要能结合伴刀豆凝集素A, 也能结合E-型及L-型植物凝集素, 显示这种糖蛋白的糖链可能含有较多的高甘露糖型.这些结果提示糖链在诱癌过程中结构有了改变,使之在肝癌细胞的迁移和转移中起重要作用.  相似文献   

11.
Glycosylation is among the most complex posttranslational modifications with an extremely high level of diversity that has made it refractory to high-throughput analyses. Despite its resistance to high-throughput techniques, glycosylation is important in many critical cellular processes that necessitate a productive approach to their analysis. To facilitate studies in glycosylation, we developed a high-throughput lectin microarray for defining mammalian cell surface glycan signatures. Using the lectin microarray we established a binary analysis of cell binding and hierarchical organization of 24 mammalian cell lines. The array was also used to document changes in cell surface glycosylation during cell development and differentiation of primary murine immune system cells. To establish the biological and clinical importance of glycan signatures, the lectin microarray was applied in two systems. First, we analyzed the cell surface glycan signatures and were able to predict mannose-dependent tropism using a model pathogen. Second, we used the glycan signatures to identify novel lectin biomarkers for cancer stem-like cells in a murine model. Thus, lectin microarrays are an effective tool for analyzing diverse cell processes including cell development and differentiation, cell-cell communication, pathogen-host recognition, and cell surface biomarker identification.  相似文献   

12.
Currently there is only a modest level knowledge of the glycosylation status of immortalised cell lines that are commonly used in cancer biology as well as their binding affinities to different glycan structures. Through use of glycan and lectin microarray technology, this study has endeavoured to define the different bindings of cell surface carbohydrate structures to glycan-binding lectins. The screening of breast cancer MDA-MB435 cells, cervical cancer HeLa cells and colon cancer Caco-2, HCT116 and HCT116-FM6 cells was conducted to determine their differential bindings to a variety of glycan and lectin structures printed on the array slides. An inverse relationship between the number of glycan structures recognised and the variety of cell surface glycosylation was observed. Of the cell lines tested, it was found that four bound to sialylated structures in initial screening. Secondary screening in the presence of a neuraminidase inhibitor (4-deoxy-4-guanidino-Neu5Ac2en) significantly reduced sialic acid binding. The array technology has proven to be useful in determining the glycosylation signatures of various cell-lines as well as their glycan binding preferences. The findings of this study provide the groundwork for further investigation into the numerous glycan-lectin interactions that are exhibited by immortalised cell lines.  相似文献   

13.
It is well known that cell surface glycans or glycocalyx play important roles in sperm motility, maturation and fertilization. A comprehensive profile of the sperm surface glycans will greatly facilitate both basic research (sperm glycobiology) and clinical studies, such as diagnostics of infertility. As a group of natural glycan binders, lectin is an ideal tool for cell surface glycan profiling. However, because of the lack of effective technology, only a few lectins have been tested for lectin-sperm binding profiles. To address this challenge, we have developed a procedure for high-throughput probing of mammalian sperm with 91 lectins on lectin microarrays. Normal sperm from human, boar, bull, goat and rabbit were collected and analyzed on the lectin microarrays. Positive bindings of a set of ~50 lectins were observed for all the sperm of 5 species, which indicated a wide range of glycans are on the surface of mammalian sperm. Species specific lectin bindings were also observed. Clustering analysis revealed that the distances of the five species according to the lectin binding profiles are consistent with that of the genome sequence based phylogenetic tree except for rabbit. The procedure that we established in this study could be generally applicable for sperm from other species or defect sperm from the same species. We believe the lectin binding profiles of the mammalian sperm that we established in this study are valuable for both basic research and clinical studies.  相似文献   

14.

Background and Objective

Due to recurrence and metastasis, the mortality of Hepatocellular carcinoma (HCC) is high. It is well known that the epithelial mesenchymal transition (EMT) and glycan of cell surface glycoproteins play pivotal roles in tumor metastasis. The goal of this study was to identify HCC metastasis related differential glycan pattern and their enzymatic basis using a HGF induced EMT model.

Methodology

HGF was used to induce HCC EMT model. Lectin microarray was used to detect the expression of cell surface glycan and the difference was validated by lectin blot and fluorescence cell lectin-immunochemistry. The mRNA expression levels of glycotransferases were determined by qRT-PCR.

Results

After HGF treatment, the Huh7 cell lost epithelial characteristics and obtained mesenchymal markers. These changes demonstrated that HGF could induce a typical cell model of EMT. Lectin microarray analysis identified a decreased affinity in seven lectins ACL, BPL, JAC, MPL, PHA-E, SNA, and SBA to the glycan of cell surface glycoproteins. This implied that glycan containing T/Tn-antigen, NA2 and bisecting GlcNAc, Siaα2-6Gal/GalNAc, terminal α or βGalNAc structures were reduced. The binding ability of thirteen lectins, AAL, LCA, LTL, ConA, NML, NPL, DBA, HAL, PTL II, WFL, ECL, GSL II and PHA-L to glycan were elevated, and a definite indication that glycan containing terminal αFuc and ± Sia-Le, core fucose, α-man, gal-β(α) GalNAc, β1,6 GlcNAc branching and tetraantennary complex oligosaccharides structures were increased. These results were further validated by lectin blot and fluorescence cell lectin-immunochemistry. Furthermore, the mRNA expression level of Mgat3 decreased while that of Mgat5, FucT8 and β3GalT5 increased. Therefore, cell surface glycan alterations in the EMT process may coincide with the expression of glycosyltransferase.

Conclusions

The findings of this study systematically clarify the alterations of cell surface glycan in cancer EMT, and may provide novel insight for HCC metastasis.  相似文献   

15.
A glycan microarray was developed by using 2,6-diaminopyridine (DAP) as a fluorescent linker and printing of the glycan-DAP conjugates (GDAPs) on epoxy-activated glass slides. Importantly, all coupled GDAPs showed a detectable level of concentration-dependent GDAP fluorescence under blue laser excitation (495 nm) that can be used for both grid location and on-slide quantification. A glycan array including a large number of GDAP’s derived from natural and commercially available free glycans was constructed and glycan interactions with various plant lectins were investigated. In addition, binding parameters of lectins to glycans were obtained by varying both the amount of GDAPs on the array and the lectin concentration in analyses. These data demonstrate the general utility of GDAP microarrays for functional glycomic analyses and for determining binding parameters of glycan binding proteins (GBPs).  相似文献   

16.
F18-positive enterotoxigenic and Shiga toxin-producing Escherichia coli are responsible for post-weaning diarrhoea and oedema disease in pigs and lead to severe production losses in the farming industry. F18 fimbriae attach to the small intestine of young piglets by latching onto glycosphingolipids with A/H blood group determinants on type 1 core. We demonstrate the N-terminal domain of the F18 fimbrial subunit FedF to be responsible for ABH-mediated attachment and present its X-ray structure in ligand-free form and bound to A and B type 1 hexaoses. The FedF lectin domain comprises a 10-stranded immunoglobulin-like β-sandwich. Three linear motives, Q(47) -N(50) , H(88) -S(90) and R(117) -T(119) , form a shallow glycan binding pocket near the tip of the domain that is selective for type 1 core glycans in extended conformation. In addition to the glycan binding pocket, a polybasic loop on the membrane proximal surface of FedF lectin domain is shown to be required for binding to piglet enterocytes. Although dispensable for ABH glycan recognition, the polybasic surface adds binding affinity in the context of the host cell membrane, a mechanism that is proposed to direct ABH-glycan binding to cell-bound glycosphingolipids and could allow bacteria to avoid clearance by secreted glycoproteins.  相似文献   

17.
Among the “omics”, glycomics is one of the most complex fields and needs complementary strategies of analysis to decipher the “glycan dictionary”. As an alternative method, which has developed since the beginning of the 21st century, lectin array technology could generate relevant information related to glycan motifs, accessibility and a number of other valuable insights from molecules (purified and non-purified) or cells. Based on a cell line model, this study deals with the key parameters that influence the whole cell surface glycan interaction with lectin arrays and the consequences on the interpretation and reliability of the results. The comparison between the adherent and suspension forms of Chinese Hamster Ovary (CHO) cells, showed respective glycan signatures, which could be inhibited specifically by neoglycoproteins. The modifications of the respective glycan signatures were also revealed according to the detachment modes and cell growth conditions. Finally the power of lectin array technology was highlighted by the possibility of selecting and characterizing a specific clone from the mother cell line, based on the slight difference determination in the respective glycan signatures.  相似文献   

18.
Glycan microarrays are emerging as increasingly used screening tools with a high potential for unraveling protein–carbohydrate interactions: probing hundreds or even thousands of glycans in parallel, they provide the researcher with a vast amount of data in a short time-frame, while using relatively small amounts of analytes. Natural glycan microarrays focus on the glycans’ repertoire of natural sources, including both well-defined structures as well as still-unknown ones. This article compares different natural glycan microarray strategies. Glycan probes may comprise oligosaccharides from glycoproteins as well as glycolipids and polysaccharides. Oligosaccharides may be purified from scarce biological samples that are of particular relevance for the carbohydrate-binding protein to be studied. We give an overview of strategies for glycan isolation, derivatization, fractionation, immobilization and structural characterization. Detection methods such as fluorescence analysis and surface plasmon resonance are summarized. The importance of glycan density and multivalency is discussed. Furthermore, some applications of natural glycan microarrays for studying lectin and antibody binding are presented.  相似文献   

19.
Glycan microarrays are emerging as increasingly used screening tools with a high potential for unraveling protein-carbohydrate interactions: probing hundreds or even thousands of glycans in parallel, they provide the researcher with a vast amount of data in a short time-frame, while using relatively small amounts of analytes. Natural glycan microarrays focus on the glycans' repertoire of natural sources, including both well-defined structures as well as still-unknown ones. This article compares different natural glycan microarray strategies. Glycan probes may comprise oligosaccharides from glycoproteins as well as glycolipids and polysaccharides. Oligosaccharides may be purified from scarce biological samples that are of particular relevance for the carbohydrate-binding protein to be studied. We give an overview of strategies for glycan isolation, derivatization, fractionation, immobilization and structural characterization. Detection methods such as fluorescence analysis and surface plasmon resonance are summarized. The importance of glycan density and multivalency is discussed. Furthermore, some applications of natural glycan microarrays for studying lectin and antibody binding are presented.  相似文献   

20.
Symbiodinium spp. dinoflagellates are common symbionts of marine invertebrates. The cell‐surface glycan profile may determine whether a particular Symbiodinium is able to establish and maintain a stable symbiotic relationship. To characterize this profile, eight Symbiodinium cultures were examined using eight glycan‐specific fluorescent lectin probes. Confocal imaging and flow‐cytometric analysis were used to determine significant levels of binding of each probe to the cell surface. No significant variation in glycan profile was seen within each Symbiodinium culture, either over time or over growth phase. No cladal trends in glycan profile were found, but of note, two different Symbiodinium cultures (from clades A and B) isolated from one host species had very similar profiles, and two other cultures (from clades B and F) from different host species had identical profiles. Two lectin probes were particularly interesting: concanavalin A (ConA) and Griffonia simplicifolia‐II (GS‐II). The ConA probe showed significant binding to all Symbiodinium cultures, suggesting the widespread presence of cell‐surface mannose residues, while the GS‐II probe, which is specific for glycans possessing N‐acetyl groups, showed significant binding to six of eight Symbiodinium cultures. Other probes showed significant binding to the following percentage of Symbiodinium cultures examined: wheat germ agglutinin (WGA), 37.5%; peanut agglutinin (PNA), 50%; Helix pomatia agglutinin (HPA), 50%; phytohemagglutinin‐L (PHA‐L), 62.5%; soybean agglutinin (SBA), 50%; and Griffonia simplicifolia‐IB4 (GS‐IB4), 12.5%. This study highlights the complexity of cell‐surface glycan assemblages and their potential role in the discrimination of different dinoflagellate symbionts by cnidarian hosts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号