首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
植物聚酮类化合物主要包括酚类、芪类及类黄酮化合物等,在植物花色、防止紫外线伤害、预防病原菌、昆虫危害以及作为植物与环境互作信号分子方面行使着重要的生物学功能。该类化合物具有显著多样的生物学活性,对人体保健及疾病治疗有显著意义。植物类型III 聚酮化合物合酶 (PKS) 在该类化合物生物合成起始反应中行使着关键作用,决定该类化合物基本分子骨架建成和代谢途径碳硫走向,为合成途径关键酶和限速酶。以查尔酮合酶为原型酶的植物类型III PKS超家族是研究系统进化和蛋白结构与功能关系的模式分子家族,目前已经分离得到14种植物类型III PKS基因,这些同祖同源基因及其表达产物既有共性,也表现出许多独特个性,这些个性赋予此类次生代谢产物结构上的多样性。以下综述了植物类型III PKS超家族基因结构、功能及代谢产物研究进展。  相似文献   

2.
植物类型Ⅲ聚酮化合物合酶(PKS)催化合成多种植物次生代谢产物的基本分子骨架,参与植物体许多重要生物学功能的行使,一直是研究蛋白结构与功能关系、基于结构进行分子改造的重要模式分子家族。目前在蛋白质数据库(PDB)中有超过80个不同种属来源的类型Ⅲ PKS的三维结构被报道,其中包括了研究最为透彻的查尔酮合酶在内的7种酶的晶体结构,这些结构的发表对于阐明该类酶复杂多变的底物专一性、链延伸和不同的环化反应机制奠定了结构基础。三维空间结构解析以及基于定点突变的结构功能分析是进行酶工程、基因工程的基础。以下系统综述了植物类型Ⅲ PKS超家族晶体结构和功能的研究进展。  相似文献   

3.
植物类型Ⅲ聚酮合酶超家族(PKSs),又称查尔酮合酶(Chalcone synthase,CHS)超家族,催化合成多种植物次生代谢产物的分子骨架。苯亚甲基丙酮合酶(Benzalacetone synthase,BAS)催化4-香豆酰辅酶A与丙二酰辅酶A通过一步脱羧缩合反应生成苯亚甲基丙酮,是一系列具有重要生物学活性苯丁烷类化合物及其衍生物的前体化合物。前期工作从虎杖中分离出苯亚甲基丙酮合酶BAS(PcPKS2)和1个具有CHS和BAS活性的双功能酶(PcPKS1)。两者与超家族其他成员序列经比较,在包括门卫氨基酸Phe215和Phe265在内的重要氨基酸序列存在一定差异。已有蛋白晶体学研究结果表明,PKSs家族不同成员的功能多样性来自于酶催化位点的非常微小的构象变化。为了能够从结构上比较PcPKS2和Pc PKS1双功能酶活性差异可能产生的机制,以确定其高效BAS活性的分子机理,研究利用了大肠杆菌原核表达系统过量表达了C-端融合有His6标签的重组蛋白,经纯化得到了高纯度蛋白。经过对其晶体生长条件进行摸索和优化,得到了能用于X-射线衍射的单晶,为其结构解析、催化机理研究、了解虎杖聚酮类化合物生物合成机制和该类酶在基因工程中的应用提供了基础。  相似文献   

4.
聚酮类化合物生物合成基因簇与药物筛选   总被引:3,自引:0,他引:3  
由微生物和植物产生的聚酮类化合物的数量极其庞大,是一大类结构多样化和生物活性多样性的天然产物,已经成为新药的重要来源.介绍了3种类型聚酮类化合物生物合成基因簇的特点,即以模块形式存在的I型聚酮合酶,包含一套可重复使用结构域的Ⅱ型聚酮合酶以及不需要ACP参与,以植物中的查耳酮合酶为代表的Ⅲ型聚酮合酶.同时,还介绍了基于3种类型聚酮类化合物生物合成基因的特点,利用分子生物学方法构建筛选探针,进行当前药物基因筛选的进展.  相似文献   

5.
植物Ⅲ型聚酮合酶基因家族的分子进化分析   总被引:1,自引:0,他引:1  
Ⅲ型聚酮合酶(type Ⅲ polyketide synthase,PKSⅢ)广泛存在于细菌、真菌和植物中,目前数据库中已积累了大量的序列资料。为了进一步了解植物Ⅲ型聚酮合酶基因家族的分子进化,以及其作为系统进化研究材料的可能性,选取了75条来自不同植物物种包括苔藓类植物、蕨类植物、裸子植物、单子叶植物和双子叶植物的PKSⅢ蛋白序列,用CLUSTAL X软件对其氨基酸序列进行了比对,并用邻位相接法构建了系统进化树。结果表明,尽管不同来源的PKSⅢ序列表现了很大的差异,但保守结构域CHS-like所包含的主要功能位点半胱氨酸(Cys184)、苯丙氨酸残基(Phe236和Phe286)、组氨酸残基(His335)、天冬酰氨残基(Asn369)在各植物物种中具有很好的保守性;同时发现,在植物PKSⅢ序列中多数的Cys位点均具有较好的保守性,而且蕨类植物PKSⅢ和单子叶植物PKSⅢ在Cys保守位点有很好的相似性;进一步构建分子进化树表明,PKSⅢ基因基本上首先根据功能而聚类,明显地划分为CHSs和non-CHSs两类,其次按照不同的植物物种聚类。  相似文献   

6.
聚酮化合物(polyketides)是一类庞大的次级代谢家族,聚酮合酶(polyketide synthase,PKS)是介导聚酮化合物生物合成的关键酶。通过巢氏简并PCR与染色体步行的方法,获得了草菇中的编码PKS的基因vv-alb的全长序列,并通过荧光实时定量RT-PCR方法对vv-alb基因在草菇不同生长阶段与不同部位的表达情况进行了初步分析,为进一步研究PKS在草菇和其他食用真菌生物代谢过程中的作用奠定了一定的基础。  相似文献   

7.
真菌聚酮合酶在代谢中可催化合成多种具有重要生物学活性的次级代谢物,所以真菌聚酮合酶正逐渐成为药学、食品科学和农学等领域的研究热点。本文综述了近五年来建立的几种分离真菌聚酮合酶基因的方法。这些方法解决了真菌中聚酮合酶基因簇难以分离的问题,为改造和利用真菌聚酮合酶以及发掘真菌聚酮化合物资源提供了强有力的手段。  相似文献   

8.
海洋链霉菌通过聚酮合酶(PKS)合成许多结构和功能多样且具有药用价值的聚酮化合物(PKs),酮合成酶结构域(KS)作为PKS的核心结构域,可催化底物与伸长的聚酮之间的脱羧缩合,在聚酮化合物生物合成中起着重要作用。本文通过对从海洋链霉菌Streptomyces sp. X66基因组DNA克隆获得的ks基因的生物信息学分析表明,该ks基因序列长945 bp, BLAST序列比对显示其具有典型的酮合酶结构域的功能区域。理化分析显示其拟编码309个氨基酸,理论等电点为6.60,原子组成为C1401H2239N425O419S8,不稳定指数为42.11,平均亲水系数为0.112,编码产物为酸性疏水不稳定蛋白,且不含信号肽和跨膜结构,二级结构以无规则卷曲和α-螺旋为主,SDS-PAGE显示其分子量约为55 kDa。通过对ks基因的研究,为进一步解析聚酮化合物合成代谢中的调控机制及组合生物学和体外酶系合成聚酮化合物提供参考。  相似文献   

9.
多不饱和脂肪酸合成途径研究进展   总被引:1,自引:0,他引:1  
多不饱和脂肪酸在大多数生物体膜生物学和信号传递过程中起着至关重要的作用。最近研究发现,一些深海生物合成多不饱和脂肪酸并非由饱和脂肪酸的延长及脱饱和反应,而是由聚酮合酶途径(polyketide synthase,PKS)直接合成。介绍多不饱和脂肪酸的生物合成并总结近年来聚酮合酶这一新途径及其分子机制的研究进展。  相似文献   

10.
植物Ⅲ型聚酮合酶的分子机制与应用前景   总被引:1,自引:0,他引:1  
生书晶  赵树进 《生物工程学报》2009,25(11):1601-1607
植物III型聚酮合酶能催化生成一系列结构各异、具有不同生理活性、包含查耳酮合酶基本骨架的植物次生代谢产物,这类次生代谢产物不仅使植物体本身的抗逆性提高,并且对人类健康医疗有很好的应用前景。以下综述了近年来从植物中克隆、鉴定III型聚酮合酶的研究进展,着重论述了其分子结构、催化反应的类型和机制、表达调控及其在转基因工程方面的研究和应用前景。这些研究将为有效地对其进行基因改造,合成一些难以化学合成的新型天然化合物奠定基础,并且为将来进一步开展III型聚酮合酶的转基因工程提供了参考。  相似文献   

11.
王毅  周旭  许宰铣  王娟 《微生物学报》2014,54(7):770-777
【目的】探索药用地衣长松萝(Usnea longissima Ach)聚酮化合物的生物合成基因簇,克隆聚酮合酶(PKS)基因并分析其功能。【方法】以长松萝地衣型真菌为材料,通过巢氏PCR获得聚酮合酶基因片段和原位杂交筛选基因组文库获得聚酮合酶基因及相邻基因簇。并对获得聚酮合酶进行分子系统进化分析和基因表达分析。【结果】获得药用地衣长松萝中的编码聚酮合酶基因UlPKS5的全长序列以及相邻修饰基因β-内酰胺酶和脱水酶。聚酮合酶UlPKS5含有酮体合成酶(KS),酰基转移酶(AT),产物模板(PT)以及酰基载体蛋白(ACP)结构域。分子系统进化分析显示UlPKS5属于非还原型聚酮合酶中第五组,与蒽醌类化合物生物合成相关。通过半定量RT-PCR分析表明山梨醇(10%)和蔗糖(2%和10%)能够强烈诱导UlPKS5基因表达。【结论】聚酮合酶(UlPKS5)及相邻修饰基因β-内酰胺酶和脱水酶与长松萝中蒽醌类化合物生物合成相关。  相似文献   

12.
白藜芦醇是一种天然植保素,且具有特殊的药理和保健功能,芪合酶(Stilbene synthase,STS)是该化合物生物合成的关键酶和限速酶。白藜芦醇存在于有限几种植物且含量差异很大,虎杖中白藜芦醇含量比葡萄、花生高1 000倍以上,推测不同STS的催化能力有可能是白藜芦醇含量差异的原因之一。为验证上述推测,文中通过overlap PCR技术从葡萄叶片基因组DNA中克隆得到葡萄STS基因,连同前期工作中获得的虎杖STS基因(PcPKS5),进行了原核表达分析。诱导表达产物经过Ni2+亲和柱纯化和PD-10柱脱盐后,均得到分子量约43 kDa的可溶性纯化蛋白。酶促产物分析结果表明,两种酶催化产物均为白藜芦醇。酶动力学分析表明,虎杖STS催化效率(Kcat/Km)是葡萄STS的2.4倍。文中从植物类型Ⅲ聚酮化合物合酶(Polyketide synthase,PKS)超家族催化活性位点和保守位点角度分析了造成上述两种酶活性产生差异可能存在的原因。  相似文献   

13.
植物Ⅲ型聚酮合酶(Polyketide synthases,PKSs)催化形成一系列结构迥异、生理活性不同的聚酮类化合物的基本骨架结构,是聚酮类化合物生物合成途径的关键酶。目前已从植物中克隆和鉴定了多种功能不同的Ⅲ型PKSs。定点突变技术是研究蛋白质结构与功能之间复杂关系的重要方法。文中综述了近年来基于定点突变的植物Ⅲ型PKSs结构与功能关系的研究进展,包括利用定点突变技术修饰各种可能影响植物Ⅲ型PKSs结构的氨基酸残基,来研究其对功能的影响(如控制起始底物的特异性、缩合反应次数以及中间产物环化方式),以期为植物Ⅲ型PKSs结构与功能关系的研究提供参考。  相似文献   

14.
I型聚酮合酶(PKSI)的模块型分子结构组织方式非常适合于组合生物合成研究.结构域和模块通过二级组织方式构成了PKSI的催化单元,其它结构多肽则作为“支架”.在“支架”上对结构域和模块两个水平进行突变、替换、插入、缺失等基因操作形成重组PKS,可以理性设计并获得复杂多样的新活性或高活性的聚酮化合物.利用PKSI进行组合生物合成以期获得新聚酮化合物的研究迄今已有约25年,但是目前仍不能够对PKS进行完美的理性设计,快速合成目标活性的新聚酮化合物.PKS中的酰基转移酶结构域的研究在PKS的组合生物合成研究中一直发挥着重要作用.本文结合本课题组的研究基础,对AT结构域的结构、功能及在组合生物合成研究中的最新研究成果作以分析总结.  相似文献   

15.
由真菌聚酮合酶合成的苯二酚内酯类次生代谢产物结构和功能多样,在医药和农业上具有广泛的用途。苯二酚内酯由一对还原型聚酮合酶和非还原型聚酮合酶协同生物催化合成。还原型聚酮合酶和非还原型聚酮合酶由多功能结构域组成,每个结构域在生物合成的过程中程序化地执行特定的功能。通过交换不同真菌苯二酚内酯合成途径中非还原型聚酮合酶的起始物酰基转移酶结构域,在酿酒酵母中与相应的还原型聚酮合酶组合表达,合成了“非天然”的苯二酚内酯聚酮产物,并初步讨论了起始物酰基转移酶结构域的识别规律。  相似文献   

16.
磷酸泛酰巯基乙胺基转移酶(PPTase)催化脂肪酸合酶(FAS)、聚酮合酶(PKS)和非核糖体肽合成酶(NRPS)中载体蛋白从脱辅基形态转化为全辅基形态,对脂肪酸、PKS产物和NRPS产物的生物合成起着不可或缺的作用。本文介绍并总结了链霉菌PPTase对载体蛋白底物选择性的最新研究进展:Ⅲ型PPTase特异性催化同一个多肽链中ACP的辅基化;Ⅱ型PPTase倾向于催化Ⅰ型PKS中ACP和NRPS中PCP的辅基化;Ⅰ型PPTase倾向于催化Ⅱ型PKS中ACP和Ⅱ型FAS中ACP的辅基化;编码基因位于基因簇内的Ⅰ型/Ⅱ型PPTase倾向于催化编码基因位于同基因簇内的PKS/NRPS中ACP/PCP的辅基化;这些研究结果为阐明并改造链霉菌辅基化网络以提高特定次级代谢产物的产量提供了参考和借鉴。  相似文献   

17.
4-羟基-6-甲基-2-吡喃酮(2-吡喃酮)及其衍生物是一类重要的植物次生代谢产物,具有抗虫、抗真菌等功能,在工业上可用于生产可再生化学平台间苯三酚和1,3,5-三氨基-2,4,6-三硝基苯. 2-吡喃酮合酶(2PS),一种Ⅲ型聚酮合酶(PKSs),是合成2-吡喃酮的关键酶.本研究以中药材虎杖(Polygonum cuspidatum Sieb. et Zucc)为材料,从中分离鉴定了一种新的2-吡喃酮合酶(Pc2PS). Pc2PS与已知的几种2PSs的氨基酸序列相似性为54%~56%.通过体外酶促反应鉴定功能发现,Pc2PS可以催化1分子乙酰-CoA与2分子丙二酰-CoA,缩合生成4-羟基-6-甲基-2-吡喃酮;也可以只利用3分子丙二酰-CoA,以相同的效率缩合生成2-吡喃酮.由此可以看出,乙酰-CoA存在与否并不影响该酶的催化效率.随后,我们测定了Pc2PS以丙二酰-CoA为单一底物时的酶动力学参数.虽然之前报道的2PSs也可以只利用丙二酰-CoA生成2-吡喃酮,但与Pc2PS不同的是,乙酰-CoA的缺失会大大降低催化效率.另外,对Pc2PS基因的组织表达特异性检测结果表明,该基因主要在虎杖根中表达,在叶中的表达量很低.本研究丰富了2PS的种类,并为2-吡喃酮的生物合成提供了基因资源.  相似文献   

18.
虎杖(Polygonum cuspidatum)聚酮合酶(polyketide synthase 1,PcPKS1)同时具有查尔酮合酶(chalcone synthase,CHS)及苯亚甲基丙酮合酶(benzylidene acetone synthase,BAS)催化活性,能够催化生成聚酮类化合物柚皮素查尔酮和苯亚甲基丙酮,进而催化合成黄酮类或覆盆子酮等具有多种生物学活性的化合物。本研究通过分析虎杖PcPKS1与掌叶大黄(Rheum palmatum)BAS、拟南芥(Arabidopsis thaliana)CHS等家族成员的序列以及酶催化位点的构象,确定可能影响酶功能的3个氨基酸位点:Thr133、Ser134、Ser339。采用定点突变对PcPKS1进行分子修饰,成功获得2个突变体并进行相关体外酶促反应,高效液相色谱(high performance liquid chromatography,HPLC)产物分析结果表明,在pH 7.0和pH 9.0的体外酶促条件下,突变体T133LS134A和S339V维持BAS和CHS双功能活性,且BAS活性显著高于原PcPKS1。本研究为利用PcPKS1进行基因工程调节黄酮类和覆盆子酮化合物的生物合成提供理论依据。  相似文献   

19.
黏细菌的显著特征之一是能够合成结构多样、功能丰富的天然产物.模块化聚酮合酶(PKS)和非核糖体肽合成酶(NRPS)途径是黏细菌合成天然产物的主要方式.与经典模块PKS/NRPS相比,黏细菌来源的模块化PKS/NRPS常表现出新颖的装配特征,显示出多样化的遗传加工潜能和装配产物结构多样性.本文综合归类分析了黏细菌来源的模块化PKS/NRPS遗传装配线类型及其对应化合物的生化结构特征,图文并茂地呈现了黏细菌在遗传、生化、组合生物合成、进化和药物开发领域的生机和潜能,并展望了基因组学时代带来的契机.  相似文献   

20.
杨瑞先  张拦  彭彪彪  蒙城功 《微生物学报》2017,57(10):1567-1582
【目的】研究药用植物芍药(Paeonia lactiflora Pall.)内生真菌的种群多样性,同时对其可能存在的聚酮合酶(Polyketide synthase,PKS)和非核糖体多肽合成酶(Non-ribosomal peptide synthetase,NRPS)基因多样性进行评估,预测芍药内生真菌产生活性次生代谢产物的潜力。【方法】采用组织分离法获得芍药根部内生真菌菌株,结合形态学特征和ITS序列分析,进行鉴定;利用兼并性引物对内生真菌中存在的聚酮合酶(PKS)基因和非核糖体多肽合成酶(NRPS)基因进行PCR扩增及序列测定分析,构建系统发育树,明确芍药内真菌PKS基因序列和NRPS基因序列的系统进化地位。【结果】从芍药组织块中共分离得到105株内生分离物,去重复后获得52株内生真菌,菌株ITS基因序列信息显示,52株芍药内生真菌隶属于7目、13科、15属,其中小球腔菌属(Leptosphaeria)、土赤壳属(Ilyonectria)和镰孢属(Fusarium)为优势种群;从52株内生真菌中筛选获得13株含PKS基因片段的菌株,8株含NRPS基因片段的菌株,部分菌株功能基因的氨基酸序列与Gen Bank中已知化合物的合成序列具有一定的同源性,预示芍药根部内生真菌具有合成丰富多样的次生代谢产物的潜力。【结论】药用植物芍药根部具有丰富的内生真菌资源,且具有产生活性次生代谢产物的潜力,值得进一步开发研究和应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号