首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Statins are first-line pharmacotherapeutic agents for hypercholesterolemia treatment in humans. However the effects of statins in animal models of atherosclerosis are not very consistent. Thus we wanted to evaluate whether atorvastatin possesses hypolipidemic and anti-inflammatory effects in mice lacking apolipoprotein E/low-density lipoprotein receptor (apoE/LDLR-deficient mice). Two-month-old female apoE/LDLR-deficient mice (n=24) were randomly subdivided into 3 groups. The control group of animals (n=8) was fed with the western type diet (atherogenic diet) and in other two groups atorvastatin was added to the atherogenic diet at the dosage of either 10 mg/kg or 100 mg/kg per day for a period of 2 months. Biochemical analysis of lipids, ELISA analysis of monocyte chemotactic protein-1 (MCP-1) in blood, quantification of lesion size and expression of vascular cell adhesion molecule-1 (VCAM-1) and intercellular cell adhesion molecule-1 (ICAM-1) in the atherosclerotic lesion by means of immunohistochemistry and Western blot analysis were performed. The biochemical analysis showed that administration of atorvastatin (100 mg/kg/day) significantly decreased level of total cholesterol, lipoproteins (VLDL and LDL), triacylglycerol, and moreover significantly increased level of HDL. ELISA analysis showed that atorvastatin significantly decreased levels of MCP-1 in blood and immunohistochemical and Western blot analysis showed significant reduction of VCAM-1 and ICAM-1 expression in the vessel wall after atorvastatin treatment (100 mg/kg/day). In conclusion, we demonstrated here for the first time strong hypolipidemic and anti-inflammatory effects of atorvastatin in apoE/LDLR-deficient mice. Thus, we propose that apoE/LDLR-deficient mice might be a good animal model for the study of statin effects on potential novel markers involved in atherogenesis and for the testing of potential combination treatment of new hypolipidemic substances with statins.  相似文献   

2.
3.
In the present study, we examined the mechanisms underlying the cytotoxicity of pitavastatin, a new statin, and we compared the in vitro potencies of muscle cytotoxicity using a prototypic embryonal rhabdomyosarcoma cell line (RD cells), a typical side effect of statins and compared the cholesterol-lowering effects of statins using Hep G2 hepatoma cells. Pitavastatin reduced the number of viable cells and caused caspase-9 and -3/7 activation in a time- and concentration-dependent manner. The comparison of cytotoxities of statins showed that statins significantly reduced cell viability and markedly enhanced activity of caspase-3/7 in concentration-dependent manner. On the other hand, the effects of hydrophilic statins, pravastatin, rosuvastatin were very weak. The rank order of cytotoxicity was cerivastatin > simvastatin acid> fluvastatin > atorvastatin > lovastatin acid > pitavastatin > rosuvastatin, pravastatin. Statin-induced cytotoxicity is associated with these partition coefficients. On the other hand, the cholesterol-lowering effect of statins did not correlate with these partition coefficients and cytotoxicity. Thus, it is necessary to consider the association between risk of myopathy and cholesterol-lowering effect of a statin for precise use of statins.  相似文献   

4.
We have retrospectively investigated the effects of three strong statins, atorvastatin, pitavastatin, and rosuvastatin, on serum uric acid (SUA) levels. SUA levels after a few months of statin treatment were compared with those before treatment in 150 outpatients with dyslipidemia. In the atorvastatin (n = 62) and rosuvastatin (n = 45) groups, the SUA levels were reduced by 6.5% (p < 0.0001) and 3.6% (p = 0.03) respectively, but in the pitavastatin group (n = 43), the SUA level increased by 3.7% (p = 0.38). Because uric acid is considered a risk factor for cardiovascular disorders, atorvastatin or rosuvastatin treatment may be recommended when statins are used in patients at high risk for cardiovascular disorders complicated with hyperuricemia.  相似文献   

5.
Deficiency of hepatic Nogo-B receptor (NgBR) expression activates liver X receptor α (LXRα) in an adenosine monophosphate-activated protein kinase α (AMPKα)-dependent manner, thereby inducing severe hepatic lipid accumulation and hypertriglyceridemia. Statins have been demonstrated non-cholesterol lowering effects including anti-nonalcoholic fatty liver disease (NAFLD). Herein, we investigated if the anti-NAFLD function of statins depends on activation of NgBR expression. In vivo, atorvastatin protected apoE deficient or NgBR floxed, but not hepatic NgBR deficient mice, against Western diet (WD)-increased triglyceride levels in liver and serum. In vitro, statins reduced lipid accumulation in nonsilencing small hairpin RNA-transfected (shNSi), but not in NgBR small hairpin RNA-transfected (shNgBRi) HepG2 cells. Inhibition of cellular lipid accumulation by atorvastatin is related to activation of AMPKα, and inactivation of LXRα and lipogenic genes. Statin also inhibited expression of oxysterol producing enzymes. Associated with changes of hepatic lipid levels by WD or atorvastatin, NgBR expression was inversely regulated. At cellular levels, statins increased NgBR mRNA and protein expression, and NgBR protein stability. In contrast to reduced cellular cholesterol levels by statin or β-cyclodextrin, increased cellular cholesterol levels decreased NgBR expression suggesting cholesterol or its synthesis intermediates inhibit NgBR expression. Indeed, mevalonate, geranylgeraniol or geranylgeranyl pyrophosphate, but not farnesyl pyrophosphate or farnesol, blocked atorvastatin-induced NgBR expression. Furthermore, we determined that induction of hepatic NgBR expression by atorvastatin mainly depended on inactivation of extracellular signal-regulated kinases 1/2 (ERK1/2) and protein kinase B (Akt). Taken together, our study demonstrates that statins inhibit NAFLD mainly through activation of NgBR expression.  相似文献   

6.
During thymocyte development, CCR9 is expressed on late CD4-CD8- (double-negative (DN)) and CD4+CD8+ (double-positive) cells, but is subsequently down-regulated as cells transition to the mature CD4+ or CD8+ (single-positive (SP)) stage. This pattern of expression has led to speculation that CCR9 may regulate thymocyte trafficking and/or export. In this study, we generated transgenic mice in which CCR9 surface expression was maintained throughout T cell development. Significantly, forced expression of CCR9 on mature SP thymocytes did not inhibit their export from the thymus, indicating that CCR9 down-regulation is not essential for thymocyte emigration. CCR9 was also expressed prematurely on immature DN thymocytes in CCR9 transgenic mice. Early expression of CCR9 resulted in a partial block of development at the DN stage and a marked reduction in the numbers of double-positive and SP thymocytes. Moreover, in CCR9-transgenic mice, CD25high DN cells were scattered throughout the cortex rather than confined to the subcapsular region of the thymus. Together, these results suggest that regulated expression of CCR9 is critical for normal development of immature thymocytes, but that down-regulation of CCR9 is not a prerequisite for thymocyte emigration.  相似文献   

7.
目的:在急性冠脉综合征( acute coronary syndromes, ACS )的治疗中,抗血小板治疗及调脂治疗是最基础的治疗方案。近来 有学者提出,氯吡格雷和他汀类药物都经过细胞色素CYP 3A4 途径代谢,二者因存在竞争性抑制,有可能降低氯吡格雷抗血小板 的活性。本试验将针对阿托伐他汀及瑞舒伐他汀进行研究。方法:选择急性冠脉综合症的患者42 例,所有患者均接受氯吡格雷治 疗(负荷剂量300 mg,维持剂量75 mg/d)。随机分配为A、B 两组,A 组(n=20)服用阿托伐他汀治疗(20 mg/d),B 组(n=22 服用瑞 舒伐他汀治疗(10 mg/d)。分别于氯吡格雷服用前、服药治疗后3 天、服药治疗后7 天后采静脉血送检,测定ADP(10 滋mol/L)诱导 的血小板聚集率。结果:阿托伐他汀组(A 组)及瑞舒伐他汀组(B 组)相比,服用氯吡格雷前ADP 诱导的血小板聚集率基线值无 统计学差异。服用氯吡格雷3 日及7 日后,ADP诱导的血小板聚集率明显降低,(3.85± 2.58)vs(3.09± 2.27),(0.65± 0.88)vs(1.05± 0.95),P>0.05,无明显统计学差异。结论:氯吡格雷的确可以降低血小板的活性。同时,短期之内氯吡格雷的抗血小板活性未受到 他汀类的影响,包括经过CPY3A4途径的他汀,如阿托伐他汀。  相似文献   

8.
Heme oxygenase (HO) has a central role in cellular antioxidant defences and vascular protection, and it may mediate pleiotropic actions of drugs used in cardiovascular therapy. We investigated whether long-term use of statins upregulates HO activity and increases carbon monoxide (CO) and bilirubin levels in vivo. Adult FvB mice were given atorvastatin or rosuvastatin (5 mg/kg) daily by i.p. injections for 1, 2, or 3 weeks. HO activity, tissue CO, bilirubin, and antioxidant levels, total plasma bilirubin, and carboxyhemoglobin (COHb) were measured. Fold changes in heart HO activity significantly increased after 1, 2, and 3 weeks of atorvastatin (1.24 +/- 0.06 (p < or = 0.05); 1.29 +/- 0.26 (p < or = 0.03); 1.33 +/- 0.08 (p < 0.01), respectively) and 2 and 3 weeks of rosuvastatin (1.23 +/- 0.20 (p < or = 0.03); 1.63 +/- 0.42 (p < 0.01), respectively). Heart tissue CO and COHb levels also increased after 3 weeks with atorvastatin (1.30 +/- 0.24 (p < or = 0.05); 1.92 +/- 0.17 (p < or = 0.001), respectively) and rosuvastatin (1.47 +/- 0.13 (p < or = 0.004); 1.63 +/- 0.12 (p < or = 0.001), respectively). Significant increases in heart antioxidant levels were observed after statin treatment and corroborated by heart bilirubin content elevations. Antioxidant level increases were abolished by treatment with an HO inhibitor. These findings suggest that the induction of HO and the production of its products, CO and bilirubin, may be a mechanism by which statins exert antioxidant actions and confer cardioprotection in vivo.  相似文献   

9.
It is well documented that statins protect atherosclerotic patients from inflammatory changes and plaque instability in coronary arteries. However, the underlying mechanisms are not fully understood. Using a previously established mouse model for vulnerable atherosclerotic plaque, we investigated the effect of atorvastatin (10 mg/kg/day) on plaque morphology. Atorvastatin did not lower plasma total cholesterol levels or affect plaque progression at this dosage; however, vulnerable plaque numbers were significantly reduced in the atorvastatin-treated group compared to control. Detailed examinations revealed that atorvastatin significantly decreased macrophage infiltration and subendothelial lipid deposition, reduced intimal collagen content, and elevated collagenase activity and expression of matrix metalloproteinases (MMPs). Because vascular inflammation is largely driven by changes in monocyte/macrophage numbers in the vessel wall, we speculated that the anti-inflammatory effect of atorvastatin may partially result from decreased monocyte recruitment to the endothelium. Further experiments showed that atorvastatin downregulated expression of the chemokines monocyte chemoattractant protein (MCP)-1, chemokine (C-X3-C motif) ligand 1 (CX3CL1) and their receptors CCR2 and, CX3CR1, which are mainly responsible for monocyte recruitment. In addition, levels of the plasma inflammatory markers C-reactive protein (CRP) and tumor necrosis factor (TNF)-α were also significantly decrease in atorvastatin-treated mice. Collectively, our results demonstrate that atorvastatin can improve plaque stability in mice independent of plasma cholesterol levels. Given the profound inhibition of macrophage infiltration into atherosclerotic plaques, we propose that statins may partly exert protective effects by modulating levels of chemokines and their receptors. These findings elucidate yet another atheroprotective mechanism of statins.  相似文献   

10.
目的:在急性冠脉综合征(acute coronary syndromes,ACS)的治疗中,抗血小板治疗及调脂治疗是最基础的治疗方案。近来有学者提出,氯吡格雷和他汀类药物都经过细胞色素CYP3A4途径代谢,二者因存在竞争性抑制,有可能降低氯吡格雷抗血小板的活性。本试验将针对阿托伐他汀及瑞舒伐他汀进行研究。方法:选择急性冠脉综合症的患者42例,所有患者均接受氯吡格雷治疗(负荷剂量300mg,维持剂量75mg/d)。随机分配为A、B两组,A组(n=20)服用阿托伐他汀治疗(20mg/d),B组(n=22服用瑞舒伐他汀治疗(10mg/d)。分别于氯吡格雷服用前、服药治疗后3天、服药治疗后7天后采静脉血送检,测定ADP(10μmol/L)诱导的血小板聚集率。结果:阿托伐他汀组(A组)及瑞舒伐他汀组(B组)相比,服用氯吡格雷前ADP诱导的血小板聚集率基线值无统计学差异。服用氯吡格雷3日及7日后,ADP诱导的血小板聚集率明显降低,(3.85±2.58)vs(3.09±2.27),(0.65±0.88)vs(1.05±0.95),P〉0.05,无明显统计学差异。结论:氯吡格雷的确可以降低血小板的活性。同时,短期之内氯吡格雷的抗血小板活性未受到他汀类的影响。包括经过CPY3A4途径的他汀,如阿托伐他汀。  相似文献   

11.

Background

Cholesterol management drugs known as statins are widely used and often well tolerated; however, a variety of muscle-related side effects can arise. These adverse events (AEs) can have serious impact, and form a significant barrier to therapy adherence. Surveillance of post-marketing AEs is of vital importance to understand real-world AEs and reporting differences between individual statin drugs. We conducted a review of post-approval muscle and tendon AE reports in association with statin use, to assess differences within the drug class.

Methods

We analyzed all case reports from the FDA AE Reporting System (AERS) database linking muscle-related AEs to statin use (07/01/2005–03/31/2011). Drugs examined were: atorvastatin, simvastatin, lovastatin, pravastatin, rosuvastatin, and fluvastatin.

Results

Relative risk rates for rosuvastatin were consistently higher than other statins. Atorvastatin and simvastatin showed intermediate risks, while pravastatin and lovastatin appeared to have the lowest risk rates. Relative risk of muscle-related AEs, therefore, approximately tracked with per milligram LDL-lowering potency, with fluvastatin an apparent exception. Incorporating all muscle categories, rates for atorvastatin, simvastatin, pravastatin, and lovastatin were, respectively, 55%, 26%, 17%, and 7.5% as high, as rosuvastatin, approximately tracking per milligram potency (Rosuvastatin>Atorvastatin>Simvastatin>Pravastatin≈Lovastatin) and comporting with findings of other studies. Relative potency, therefore, appears to be a fundamental predictor of muscle-related AE risk, with fluvastatin, the least potent statin, an apparent exception (risk 74% vs rosuvastatin).

Interpretation

AE reporting rates differed strikingly for drugs within the statin class, with relative reporting aligning substantially with potency. The data presented in this report offer important reference points for the selection of statins for cholesterol management in general and, especially, for the rechallenge of patients who have experienced muscle-related AEs (for whom agents of lower expected potency should be preferred).  相似文献   

12.
Increasing evidence suggests that statins may have pleiotropic effects on vascular wall independent of their cholesterol lowering properties. In the present study, we investigated the acute vascular effects of pravastatin, atorvastatin and cerivastatin on rat isolated aortic rings. Statins effectively and comparably relaxed the aortic rings precontracted submaximally with noradrenaline, in a concentration-dependent manner, in which a high potency was observed with cerivastatin. Endothelium removal or incubation of the aortic rings with nitric oxide synthase inhibitor L-NOARG (10(-4) M) and/or cyclooxygenase inhibitor indomethacin (10(-5) M) significantly attenuated the acute vasorelaxation induced by either of statin. Additionally, different from the other two statins, a significant reduction was observed in response to cerivastatin in the presence of KATP channel inhibitor, glibenclamide (10(-5) M) and Na+- K+ ATPase inhibitor, ouabain (10(-4) M). Furthermore, pretreatment of the rings with the cholesterol precursor mevalonate (10(-3) M) significantly inhibited the endothelium-mediated relaxant effects of the statins. Our findings suggest that statins could acutely modulate vascular tone importantly by endothelium-dependent and mevalonate-related pathways.  相似文献   

13.
Statins are cholesterol-lowering drugs widely used in the prevention of cardiovascular diseases; however, they are associated with various types of myopathies. Statins inhibit 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase and thus decrease biosynthesis of low-density lipoprotein cholesterol and may also reduce ubiquinones, essential coenzymes of a mitochondrial electron transport chain, which contain isoprenoid residues, synthesized through an HMG-CoA reductase-dependent pathway. Therefore, we hypothesized that statin treatment might influence physical performance through muscular mitochondrial dysfunction due to ubiquinone deficiency. The effect of two statins, atorvastatin and pravastatin, on ubiquinone content, mitochondrial function, and physical performance was examined by using statin-treated mice. Changes in energy metabolism in association with statin treatment were studied by using cultured myocytes. We found that atorvastatin-treated mice developed muscular mitochondrial dysfunction due to ubiquinone deficiency and a decrease in exercise endurance without affecting muscle mass and strength. Meanwhile, pravastatin at ten times higher dose of atorvastatin had no such effects. In cultured myocytes, atorvastatin-related decrease in mitochondrial activity led to a decrease in oxygen utilization and an increase in lactate production. Conversely, coenzyme Q(10) treatment in atorvastatin-treated mice reversed atorvastatin-related mitochondrial dysfunction and a decrease in oxygen utilization, and thus improved exercise endurance. Atorvastatin decreased exercise endurance in mice through mitochondrial dysfunction due to ubiquinone deficiency. Ubiquinone supplementation with coenzyme Q(10) could reverse atorvastatin-related mitochondrial dysfunction and decrease in exercise tolerance.  相似文献   

14.
Apolipoprotein (apo)E is synthesized in atherosclerotic lesions by macrophages, however, its role in lesions is not known. Whereas apoE could exacerbate atherosclerosis by promoting macrophage uptake of cholesterol-rich lipoproteins or modulating protective inflammatory responses, it could also restrict lesion formation by facilitating cholesterol efflux out of lesions. The role of apoE was examined in lethally irradiated male C57BL/6J wild-type (WT) mice that were repopulated with bone marrow cells (BMT) from either identical C57BL/6J mice (WT+WT BMT) or C57BL/6J apoE-deficient mice (WT+E-/- BMT). This enabled us to compare normal mice with mice possessing macrophages that did not express apoE. The participation of macrophage-derived apoE in atherosclerosis was assessed by placing the mice on an atherogenic diet. Male WT+E-/- BMT mice had significantly reduced lesion area in the aortic valves (P < 0.01) compared with male WT+WT BMT mice ( approximately 22,000 vs. approximately 49,000 microm2/section, respectively). Further evaluation revealed that plasma cholesterol, lipoprotein cholesterol distribution, and plasma apoE were similar between the two groups, indicating that these known risk factors did not account for the differences in lesion area. However, the two groups were distinguished by the amount of apoE found in the lesions. ApoE antigen was expressed abundantly in WT+WT BMT lesions, whereas WT+E-/- BMT lesions contained little apoE. These findings indicate that the majority of apoE in lesions is synthesized locally by resident macrophages, and suggest that locally produced apoE can promote diet-induced atherosclerosis in male wild-type mice.  相似文献   

15.
H Zhang  C Guo  D Wu  A Zhang  T Gu  L Wang  C Wang 《PloS one》2012,7(7):e41147
Hydrogen sulfide, as a novel gaseous mediator, has been suggested to play a key role in atherogenesis. However, the precise mechanisms by which H(2)S affects atherosclerosis remain unclear. Therefore, the present study aimed to investigate the potential role of H(2)S in atherosclerosis and the underlying mechanism with respect to chemokines (CCL2, CCL5 and CX3CL1) and chemokine receptors (CCR2, CCR5, and CX3CR1) in macrophages. Mouse macrophage cell line RAW 264.7 or mouse peritoneal macrophages were pre-incubated with saline or NaHS (50 μM, 100 μM, 200 μM), an H(2)S donor, and then stimulated with interferon-γ (IFN-γ) or lipopolysaccharide (LPS). It was found that NaHS dose-dependently inhibited IFN-γ or LPS-induced CX3CR1 and CX3CL1 expression, as well as CX3CR1-mediated chemotaxis in macrophages. Overexpression of cystathionine γ-lyase (CSE), an enzyme that catalyzes H(2)S biosynthesis resulted in a significant reduction in CX3CR1 and CX3CL1 expression as well as CX3CR1-mediated chemotaxis in stimulated macrophages. The inhibitory effect of H(2)S on CX3CR1 and CX3CL1 expression was mediated by modulation of proliferators-activated receptor-γ (PPAR-γ) and NF-κB pathway. Furthermore, male apoE(-/-) mice were fed a high-fat diet and then randomly given NaHS (1 mg/kg, i.p., daily) or DL-propargylglycine (PAG, 10 mg/kg, i.p., daily). NaHS significantly inhibited aortic CX3CR1 and CX3CL1 expression and impeded aortic plaque development. NaHS had a better anti-atherogenic benefit when it was applied at the early stage of atherosclerosis. However, inhibition of H(2)S formation by PAG increased aortic CX3CR1 and CX3CL1 expression and exacerbated the extent of atherosclerosis. In addition, H(2)S had minimal effect on the expression of CCL2, CCL5, CCR2 and CCR5 in vitro and in vivo. In conclusion, these data indicate that H(2)S hampers the progression of atherosclerosis in fat-fed apoE(-/-) mice and downregulates CX3CR1 and CX3CL1 expression on macrophages and in lesion plaques.  相似文献   

16.
Clinical and experimental evidence suggest that statins decrease sympathetic activity, but whether peripheral mechanisms involving direct actions on post-ganglionic sympathetic neurons contribute to this effect is not known. Because tonic activity of these neurons is directly correlated with the size of their dendritic arbor, we tested the hypothesis that statins decrease dendritic arborization in sympathetic neurons. Oral administration of atorvastatin (20 mg/kg/day for 7 days) significantly reduced dendritic arborization in vivo in sympathetic ganglia of adult male rats. In cultured sympathetic neurons, statins caused dendrite retraction and reversibly blocked bone morphogenetic protein-induced dendritic growth without altering cell survival or axonal growth. Supplementation with mevalonate or isoprenoids, but not cholesterol, attenuated the inhibitory effects of statins on dendritic growth, whereas specific inhibition of isoprenoid synthesis mimicked these statin effects. Statins blocked RhoA translocation to the membrane, an event that requires isoprenylation, and constitutively active RhoA reversed statin effects on dendrites. These observations that statins decrease dendritic arborization in sympathetic neurons by blocking RhoA activation suggest a novel mechanism by which statins decrease sympathetic activity and protect against cardiovascular and cerebrovascular disease.  相似文献   

17.
18.
Carbonell T  Freire E 《Biochemistry》2005,44(35):11741-11748
The statins are powerful inhibitors of 3-hydroxy-3-methyl glutaryl coenzyme A reductase (HMG-CoA reductase), the key enzyme in the cholesterol biosynthetic pathway, and are among the most widely prescribed drugs in the world. Despite their clinical importance, little is known about the binding thermodynamics of statins to HMG-CoA reductase. In this paper, we report the results of inhibition kinetics and microcalorimetric analysis of a representative type I statin (pravastatin) and four type II statins (fluvastatin, cerivastatin, atorvastatin, and rosuvastatin). Inhibition constants (K(i)) range from 2 to 250 nM for the different statins. Isothermal titration calorimetry (ITC) experiments yield binding enthalpies (DeltaH(binding)) ranging between zero and -9.3 kcal/mol at 25 degrees C. There is a clear correlation between binding affinity and binding enthalpy: the most powerful statins bind with the strongest enthalpies. The proportion by which the binding enthalpy contributes to the binding affinity is not the same for all statins, indicating that the balance among hydrogen bonding, van der Waals, and hydrophobic interactions is not the same for all of them. At 25 degrees C, the dominant contribution to the binding affinity of fluvastatin, pravastatin, cerivastatin, and atorvastatin is the entropy change. Only for rosuvastatin does the enthalpy change contribute more than 50% of the total binding energy (76%). Since the enthalpic and entropic contributions to binding originate from different types of interactions, the thermodynamic dissection presented here provides a way to identify interactions that are critical for affinity and specificity.  相似文献   

19.
20.
3-Hydroxy-3-methyl-glutaryl CoA reductase inhibitors, or statins, have pleiotropic effects and can protect the vasculature in a manner independent of their lipid-lowering effect. The effectiveness of statins in reducing the risk of coronary events has been shown even in patients with diabetes, and their effects on diabetic complications have been reported. Using a model of severe hindlimb ischemia in streptozotocin-induced diabetic mice (STZ-DM), we investigated the effects and mechanisms of statin therapy in diabetic angiopathy in ischemic hindlimbs. As a result, STZ-DM mice frequently lost their hindlimbs after induced ischemia, whereas non-DM mice did not. Supplementation with statins significantly prevented autoamputation. We previously showed that diabetic vascular complications are caused by impaired expression of PDGF-BB, but statin therapy did not enhance PDGF-BB expression. Statins helped enhance endogenous endothelial nitric oxide (NO) synthase (eNOS) expression. Furthermore, the inhibition of NO synthesis by the administration of N(omega)-nitro-l-arginine methyl ester impaired the ability of statins to prevent STZ-DM mouse limb autoamputation, indicating that the therapeutic effect of statins in hindlimb ischemia in STZ-DM mice occurs via the eNOS/NO pathway. A combination therapy of statins and PDGF-BB gene supplementation was more effective for diabetic angiopathy than either therapy alone. In conclusion, these findings indicate that statin therapy might be useful for preventing intractable diabetic foot disease in patients with diabetic angiopathy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号