首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
本文报道人成熟型白内障晶状体的超徽结构和元素分析。作者使用附有能谱仪的JSM-35C扫描电镜对晶状体纤维细胞的巯、磷、钙进行微区分析。结果表明,硫的谱峰很高,磷和钙的谱峰则很低。此外,线扫描分析证明,沿扫描线硫在晶状体纤维细胞内的分布比较均一。通过扫描电镜观察,发现其纤维细胞外形不规则,球-和-凹的连接不易看到。在不同区域的晶状体纤维细胞出现大量破坏及球体的形成。而最明显的改变是在品状体局部纤维细胞的扁平面形成无数刺状突起,这些突起具有不同的大小和形态,分布也不均匀。  相似文献   

2.
在各种组织和器官中都存在允许相邻细胞的胞质区之间直接通讯的间隙连接,它们在广泛的生理过程中起关键作用。间隙连接是细胞间通道,由间隙连接蛋白组成,其中间隙连接蛋白43(Cx43)在各组织器官中广泛表达。研究发现细胞间隙连接通讯会受到冷热刺激的影响,并与Cx43表达相关。本篇综述主要介绍Cx43转录与翻译水平的调控以及它的降解途径,并对冷热刺激后Cx43表达变化的作用机制进行概述。  相似文献   

3.
自噬,或细胞自我消化,是参与蛋白质和细胞器降解细胞途径。晶状体是由一层晶状体上皮细胞及一系列正在分化的纤维细胞组成,纤维细胞发育通过线粒体、细胞核等细胞器退化完成的。在晶状体中,自噬在晶状体纤维细胞成熟,构成无细胞器区(organell-free zone,OFZ)的过程中,起着重要在作用。很多的研究证明对Atg5,Vsp34,FYCO1等基因在维持晶状体透明性中的作用进行了讨论,并且在晶状体上皮细胞,未成熟纤维细胞中证实自噬小泡的存在。本文旨在概括目前自噬的研究进展,重点介绍自噬与人晶状体发育及其与白内障形成机制的研究进展。  相似文献   

4.
间隙连接广泛分布于各种组织细胞中,由其构成的通道允许小分子信号物质在相邻细胞间直接传递,在细胞间的通讯方面起着非常重要的作用。间隙连接由连接蛋白(Cx)组成,目前已经发现Cx家族有20多个成员[1],它们在相邻细胞间组成同种或异种间隙连接,调控着细胞的增殖和分化。在哺乳动物卵泡发育过程中,卵母细胞与周围的颗粒细胞之间形成的缝隙连接,介导胞间通讯,对生殖细胞迁移、卵母细胞减数分裂能力恢复、颗粒细胞分层、卵泡成腔、黄体形成、促性腺激素信号传递有非常重要的调节作用。本文根据近年来相关的研究报道,对卵泡发育过程中间隙连接的作用进行综述。  相似文献   

5.
用石蜡切片、超薄切片和冰冻蚀刻技术研究了东方蝾螈胚胎肌细胞发育过程中间隙连接的变化。间隙连接最初出现于原肠后期的体节中胚层细胞中,到原肠末期,体节中胚层细胞间的间隙连接数量骤增,从神经板期到鼻窝出现期,间隙连接数量保持在一个相当高的水平,肌效应期后,其数量明显下降,直到肌细胞发育成熟,神经-肌肉连接充分发育,间隙连接才消失。间隙连接大小的变化与数量的变化表现为平行的现象。此外,细胞融合之前,正是间隙连接的数量和大小达到最高峰的时间。这些结果说明细胞通讯与胚胎肌细胞发育密切相关。对细胞通讯在细胞决定和分化以及细胞融合中的可能作用进行了讨论。  相似文献   

6.
用器官培养技术研究了抗连接蛋白单克隆抗体NC6对鸡胚水晶体发育的影响,同时进行了原位眼内注射NC6的实验。水晶体大小的统计分析结果指出,离体器官培养结果与原位眼内注射结果完全一致:实验组水晶体均明显地大于对照组;这种差异显著性又与培养时间正相关。但正常水晶体左右侧之间无显著的大小差异。这些结果表明,NC6确有促使水晶体增大的作用。以前的工作已经证明,NC6能阻断间隙连接的形成。因此,作者推测,可能是NC6阻断了水晶体纤维细胞中的间隙连接形成,造成了细胞分裂的失控,从而导致水晶体的增大。本文结果进一步证实了间隙连接在生长控制中起重要作用。  相似文献   

7.
关于脊椎动物眼睛晶状体纤维细胞的研究,已有不少报道,但涉及到其细胞表面结构的有关工作还不多。至于不同部位细胞的结构,特别是晶状体核纤维细胞的构形,报道也不完全一致。本文主要介绍用常规扫描电镜以及冰冻断裂扫描电镜技术,研究家兔晶状体纤维细胞的三维结构。Hansson(1970);Sakuragawa和Kuwabara(1975);Nelson和Rafferty(1976)均以小自鼠为材料。Farnsworth(1974)以及Sakuragawa(1975)分别用大白鼠为研究对象。他们先后开展了晶状体的扫描电镜研究,并对该课题的发展作出了一定贡献。Dickson和Crock(1972;1975)将冰冻断裂扫描电镜技术引入对猴晶状体  相似文献   

8.
间隙连接蛋白Cx43在人胚肺和肺癌细胞表达的研究   总被引:7,自引:0,他引:7  
细胞与细胞之间通过细胞膜上的间隙连接通道交换小分子和离子进行细胞间通讯,对细胞增殖分化调控和机体内环境稳定有重要作用。用间隙连接蛋白Cx43cDNA探针Northern印迹杂交,Cx43抗体免疫荧光染色和罗氏黄荧光染料传输方法检查,正常人胚肺细胞的Cx43在mRNA和蛋白水平有高表达,Cx43蛋白免疫荧光分布在间隙连接的部位,细胞间隙连接通讯功能明显。与正常相反,人肺癌PG系细胞Ck43无论在mRNA或蛋白质水平都无表达,细胞通讯功能缺陷。结果表明Cx43在培养的人胚肺细胞有功能性表达。人肺癌PG细胞通讯功能缺陷与Cx43基因转录抑制有关。对Cx基因的抑癌基因性质进行讨论。  相似文献   

9.
概述了间隙连接的结构和功能,以及pH值、电压、生长因子对它的调节作用.间隙连接作为相邻细胞间信息物质通道,起着传递细胞信息,协调细胞群体功能的作用,但是其形成过程以及对机体生理功能影响的研究有待进一步深入.pH值降低可引起间隙连接通道的关闭,电压升高降低通道的导电性,生长因子可通过影响间隙连接蛋白的形成和降解、促使间隙连接蛋白磷酸化调节其通透性.  相似文献   

10.
本研究应用激光扫描共聚焦显微镜的光漂白恢复技术(FRAP)分析兔早期胚胎卵裂球之间通过间隙连接介导的细胞通讯(GJIC)。研究结果发现,用强激光分别将4-细胞期胚胎、异裂胚胎和8-细胞期胚胎的一个卵裂球荧光光漂白后,经过15分钟的荧光恢复,4-细胞期胚胎的光漂白恢复率为17.8%,异裂胚胎的光漂白恢复率为23.7%,二者之间没有明显的差异;8-细胞期胚胎的光漂白恢复率为78.2%,与前二者之间存在明显的差异。推测兔早期胚胎卵裂球细胞间隙连接建立的时间在8-细胞阶段,胚胎卵裂球间隙连接通讯可能是兔胚胎正常发育的重要条件。  相似文献   

11.
Gap junction dynamics: reversible effects of hydrogen ions   总被引:9,自引:8,他引:1       下载免费PDF全文
Reversible crystallization of intramembrane particle packings is induced in gap junctions isolated from calf lens fibers by exposure to 3 x 10(-7) M or higher [H+] (pH 6.5 or lower). The changes from disordered to crystalline particle packings induced by low pH are similar to those produced in junctions of intact cells by uncoupling treatments, indicating that H+, like divalent cations, could be an uncoupling agent. The freeze-fracture appearance of both control and low pH-treated gap junctions is not altered by glutaraldehyde fixation and cryoprotective treatment, as suggested by experiments in which gap junctions of both intact cells and isolated fractions are freeze- fractured after rapid freezing to liquid N2 temperature according to Heuser et al. (13). In junctions exposed to low pH, the particles most often form orthogonal and rhombic arrays, frequently fused with each other. A number of structural characteristics of these arrays suggest that the particles of lens fiber gap junctions may be shaped as tetrameres.  相似文献   

12.
The influence of neural retina on the growth of chicken embryonic lens was studied by comparing the growth pattern of the lens transplanted onto chorio-allantoic membrane (CAM) with that of the normal lens. The lens from 6-day embryo, transplanted onto CAM after labeled with 3H-thymidine, continued to grow in the absence of neural retina at least for 12 days of incubation, although its growth rate was reduced. In the transplanted lens, no 3H-labeled epithelial cell differentiated into fiber at least for 2 days of incubation and 3H-labeled nuclei first appeared in the fiber cells on the fourth day of incubation, while, in the normal lens of 6-day embryo labeled with 3H-thymidine in situ, 3H-labeled epithelial cells differentiated into fibers within 24 hours. On the other hand, the fiber cells differentiated before transplantation maintained the nearly normal growth rate on CAM. The neural retina transplanted onto CAM together with lens induced the new fibers from the lens epithelium. These observations suggest that the neural retina initiates and promotes the fiber differentiation in the chicken lens, but its continued influence is not always necessary for the successive differentiation of epithelial cell into fiber and especially for the growth of the differentiated fiber cells.  相似文献   

13.
Gap junctions from rat liver and fiber junctions from bovine lens have similar septilaminar profiles when examined by thin-section electron microscopy and differ only slightly with respect to the packing of intramembrane particles in freeze-fracture images. These similarities have often led to lens fiber junctions being referred to as gap junctions. Junctions from both sources were isolated as enriched subcellular fractions and their major polypeptide components compared biochemically and immunochemically. The major liver gap junction polypeptide has an apparent molecular weight of 27,000, while a 25,000-dalton polypeptide is the major component of lens fiber junctions. The two polypeptides are not homologous when compared by partial peptide mapping in SDS. In addition, there is not detectable antigenic similarity between the two polypeptides by immunochemical criteria using antibodies to the 25,000-dalton lens fiber junction polypeptide. Thus, in spite of the ultrastructural similarities, the gap junction and the lens fiber junction are comprised of distinctly different polypeptides, suggesting that the lens fiber junction contains a unique gene product and potentially different physiological properties.  相似文献   

14.
Junctions between fiber cells of bovine lenses have been isolated in milligram quantities, without using detergents or proteases. The structure of the isolated junctions has been studied by thin-section, negative-stain, and freeze-fracture electron microscopy and by x-ray diffraction. The junctions are large and most often have an undulating surface topology as determined by thin sectioning and freeze-fracture. These undulations resemble the tongue-and-groove interdigitations between lens fiber cells previously seen by others (D. H. Dickson and G. W. Crock, 1972, Invest. Ophthalmol. 11:809-815). In sections, the isolated junctions display a pentalamellar structure approximately 13- 14 nm in overall thickness, which is significantly thinner than liver gap junctions. Each junctional membrane contains in the plane of the lipid bilayers distinct units arranged in a square lattice with a center-to-center spacing of 6.6 nm. Freeze-fracture replicas of the junctions fractured transversely show that the repeating units extend across the entire thickness of each membrane. Each unit is probably constructed from four identical subunits, with each subunit containing a protein of an apparent molecular weight of 27,000. We conclude that the lens junctions are structurally and chemically, different from gap junctions and could represent a new kind of intercellular contact, not simply another crystalline state of the gap junction protein.  相似文献   

15.
Square arrays and their role in ridge formation in human lens fibers   总被引:4,自引:0,他引:4  
Square arrays in human lens fibers were studied with freeze-fracture and thin-section TEM. In superficial fibers a number of patches of square array particles in the P face and pits in the E face are found in the smooth membrane. In the deeper cortex and the nucleus, fiber cells have undulating membranes and many ridges. Numerous patches of the particles (P face) are distributed in the concave regions, and the pits (E face) in the convex areas of the bumpy membrane. In most ridges, patches of the particles occur at regular intervals in the "valley" portion, while the pits are on the "crest" portion of ridges. Also, continuous square arrays having the same "valley" location as the regularly arranged patches are found in areas with extensive ridge patterns. The overlapping of the outer portions of two adjacent square arrays is found on the sides between the "crest" and the "valley" of the ridges. Structurally, square arrays are located in a nonjunctional part of the membrane; in an orthogonal crystalline arrangement; and with a particle size of about 6 nm and center-center spacing about 6.4 nm. They are structurally different from gap junctions found in the lens fibers. Thin-section studies reveal two types of cellular contacts: thin pentalamellar structures (about 12-13 nm in overall thickness) associated with the ridge patterns are believed to be square arrays; thick heptalamellar structures (about 16-17 nm in overall thickness) with a narrow gap in between the two central laminae are believed to be gap junctions. This study strongly suggests that square arrays are specifically involved in ridge formation in human lens fibers.  相似文献   

16.
Summary We report a comparative study of gap junctions in lens epithelia of frog, rabbit, rat and human, using a double mounting method for freeze-fracture electron microscopy. The gap junctions on the narrow sides of hexagonal cortical fiber cells of various species were also studied with the same technique. Gap junctions were commonly present between epithelial cells of the entire undifferentiated epithelium, between fiber cells on both wide and narrow sides, and between epithelial cells and fiber cells. Structural diversity of gap junctions, based on connexon arrangements, was evident in lens epithelia among the four species studied. Gap junctions with random arrays of connexons were found predominantly in frog lens epithelium, while the crystalline and striated configurations were mainly observed in the epithelia of human and rat, and of rabbit, respectively. On the other hand, there was no structural variation of gap junctions observed on either wide or narrow sides of lens fiber cells from any species studied. Only the random-type gap junction was found. However, the distribution of gap junctions was unique on the narrow sides. There was a single row of junctional plaques along the middle of the narrow sides, whereas the wide sides showed an uneven distribution pattern. The gap junctions between epithelial cells and fiber cells had a random packing of connexons.  相似文献   

17.
Dissociated cells of lens epithelia of adult rats were monolayerly cultured in vitro. After about 15–20 days' period of active cell growth, such characteristic structures that correspond to "lentoid bodies" described previously in chick cultures were formed. These structures consisted of elongated cells, ultrastructural profile of which was similar with lens fiber. The presence of gamma-crystallin, a marker molecule specific to mature lens fiber, was confirmed in these elongated cells by means of fluorescent antibody technique. The differentiation of lens fiber in vitro was also recognized in clones originating from single lens epithelial cells cultured at very low cell density.  相似文献   

18.
Lanthanum tracer and freeze-fracture electron microscope techniques were used to study junctional complexes between granulosa cells during the differentiation of the rabbit ovarian follicle. For convenience we refer to cells encompassing the oocyte, before antrum and gap junction formation, as follicle cells. After the appearance of an antrum and gap junctions we call the cells granulosa cells. Maculae adherentes are found at the interfaces of oocyte-follicle-granulosa cells throughout folliculogenesis. Gap junctions are first detected in follicles when the antrum appears. In early antral follicles typical large gap junctions are randomly distributed between granulosa cells. In freeze-fracture replicas, they are characterized by polygonally packed 90-Å particles arranged in rows separated by nonparticulate A-face membrane. A particle-sparse zone surrounds gap junctions and is frequently occupied by small particle aggregates of closely packed intramembranous particles. The gap junctions of granulosa cells appear to increase in size with further differentiation of the follicle. The granulosa cells of large Graafian follicles are adjoined by small and large gap junctions; annular gap junctions are also present. The large gap junctions are rarely surrounded by a particle-free zone on their A-faces, but are further distinguished by particle rows displaying a higher degree of organization.  相似文献   

19.
Cell to cell communication and pH in the frog lens   总被引:4,自引:0,他引:4       下载免费PDF全文
Fiber cells of the lens are electrically and diffusionally interconnected through extensive gap junctions. These junctions allow fluxes of small solutes to move between inner cells and peripheral cells, where the majority of transmembrane transport takes place. We describe here a method utilizing two intracellular microelectrodes to measure the cell to cell resistance between fiber cells at any given distance into the intact lens. We also use ion-sensitive microelectrodes to record intracellular pH at various depths in the intact lens. We find that gap junctions connecting inner fiber cells differ in pH sensitivity as well as normal coupling resistance from those connecting peripheral cells. The transition occurs in a zone between 500 and 650 microns into the lens. Fiber cells peripheral to this zone have a specific coupling resistance of 1.1 omega cm2, whereas those inside have a specific coupling resistance of 2.7 omega cm2. However, when the cytoplasm of fiber cells is acidified by bubbling with CO2, peripheral cells uncouple and the cell to cell resistance goes up more than 40-fold, whereas junctions inside this zone are essentially unaffected by changes in intracellular pH. In a normal frog lens, the intracellular pH in fiber cells near the lens surface is 7.02, a value significantly alkaline to electrochemical equilibrium. Our data suggest that Na/H exchange and perhaps other Na gradient-dependent mechanisms in the peripheral cells maintain this transmembrane gradient. Deep in the lens, the fiber cell cytoplasm is significantly more acidic (pHi 6.81) due to influx of hydrogen across the inner fiber cell membranes and production of H+ by the inner fiber cells. Because of the normally acid cytoplasm of interior fiber cells, their loss of gap junctional sensitivity to pH may be essential to lens survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号