首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 191 毫秒
1.
羰基不对称还原作为合成手性醇的重要方法,已成为近年来有机合成的研究热点。与传统化学法相比,利用还原酶催化前手性羰基化合物的不对称还原具有显著优势。介绍了还原酶的来源与形式,对完整细胞还原酶与游离还原酶在手性药物不对称合成中的应用进行了简要综述。  相似文献   

2.
手性醇是药物合成的重要手性砌块,利用生物催化剂不对称还原羰基化合物是手性醇制备的重要方法。介绍了生物催化还原羰基化合物的反应原理及特点,综述了重组基因工程菌的构建及其在不对称还原羰基化合物中的应用情况,展望了今后研究发展的方向。  相似文献   

3.
手性羟基化合物以其独特的光、热和化学性质广泛应用于医药、农药、精细化工、功能材料等行业.立体专一性羰基还原酶能够直接针对关键手性位点催化不对称还原潜手性底物获得目的手性产物.基于羰基还原酶的底物多样性,具有不同化学结构和功能的醇类、酯类、氨基酸、环氧化合物等重要手性中间体能够通过不对称还原途径实现单一光学活性对映体的高效制备.然而,针对具有应用价值的含有大基团、结构复杂的潜手性羰基化合物,已知的羰基还原酶通常催化活性较低.本文综述了生物催化不对称氧化还原反应的特点和规律及其关键立体选择性羰基还原酶的性质和结构特征,并在此基础上,重点针对大基团手性羟基化合物的不对称合成,总结了羰基还原酶及其催化系统开发和应用的研究进展,并进一步提出解决该关键问题的主要发展策略.  相似文献   

4.
由于氟原子的特殊性质,化合物中引入氟原子可显著改变其物理化学性质。因此,氟原子在药物中的应用越来越广。此外,80%药物分子结构属于手性分子。其中,氟代手性醇常见于手性药物结构中,该类结构的合成方法研究具有重要的意义。不对称还原含氟酮是合成此结构的常见方法。与化学还原方法相比,生物催化还原具有对映选择性强、产率高和易于分离纯化等优点。生物催化,特别是酶催化还原含氟酮类化合物成为手性药物合成领域的研究热点。本文从纯化酶催化和全细胞催化两个方面,综述了近年来含氟酮生物催化还原合成氟代手性醇的研究进展,并分析总结了氟代对酮生物催化还原的影响,最后对生物催化还原法未来的发展进行了展望。  相似文献   

5.
含芳香基手性醇是许多手性药物合成的关键手性砌块,生物催化不对称还原前手性酮是合成该类醇的重要方法之一.以4'-氯-苯乙酮为模型底物,从土壤中筛选得到一株能高效催化前手性芳香酮不对称还原合成相应手性醇的菌株,鉴定表明该菌株为白地霉( Geotrichum candid ).进一步考察了其催化4'-氯-苯乙酮不对称还原的反应特性,发现还原4'-氯-苯乙酮的产物主要为 S-4'-氯苯乙醇.在合适的反应条件下,其产率达到35%,对映选择性高于97%.  相似文献   

6.
不对称还原胺化反应是制备医药中间体手性胺结构单元的重要反应。目前已有许多不同种类的酶被应用于合成手性胺,其中NAD(P)H依赖型氧化还原酶催化的还原胺化反应最为引人注目,因为其能够一步将潜手性酮化合物完全转化为光学纯的手性胺化合物。文中以亚胺还原酶、氨基酸脱氢酶、冠瘿碱脱氢酶和还原性酮胺化酶为例,从NAD(P)H依赖型氧化还原酶的结构特征、作用机理、分子改造及催化应用等方面,综述了其在不对称还原胺化合成手性胺领域的研究进展。  相似文献   

7.
生物催化立体选择性氧化还原中存在问题及其发展策略   总被引:1,自引:0,他引:1  
以立体选择性氧化还原酶或其全细胞催化的不对称氧化还原反应已经成为转化光学活性手性醇及其他手性化合物的有效手段。然而,生物催化氧化还原反应体系存在着催化活性与专一性、反应体系与催化稳定性等生物催化剂所固有的局限性问题,而且,生物氧化还原反应必需辅酶及其再生问题也是限制该转化途径产业化应用的一个重要因素。围绕上述生物催化立体选择性氧化还原中存在的关键问题,现代分子生物技术及反应工程的不断突破和发展为改善生物催化立体选择性氧化还原在催化剂本身和反应工程方面的局限性提供了有效的发展策略,为其进一步大规模产业应用提供了发展基础。  相似文献   

8.
手性技术与生物催化   总被引:5,自引:0,他引:5  
简要介绍了手性,手性技术与生物催化的基本概念。手性,是指一个有机分子具有不对称性,形成两种空间排布方式不同的对映异构体。手性技术即生产手性化合物的技术,手性化合物的制备方法主要有手性源、外消旋体拆分、不对称合成等几种。生物催化,即利用酶或微生物等生物材料催化进行某种化学反应,被认为是手性化合物生产取得突破的关健技术。文章还介绍了生物催化外消旋体拆分、生物催化不对称合成等几种生产手性化合物的应用实例。  相似文献   

9.
应用生物法还原羰基化合物   总被引:1,自引:0,他引:1  
曹梦竺  王兴涌 《生物技术》2004,14(2):F003-F004
还原羰基化合物是生成手性化合物的一种常见方法,利用生物催化反应的特异性,应用生物法进行这一反应具有广阔的应用前景,其中包括采用酶、微生物、值物细胞等作为催化剂还原羰基化合物的反应。该文介绍了有关这一反应的研究现状。  相似文献   

10.
微生物酶转化合成手性药物的研究进展   总被引:1,自引:0,他引:1  
通过微生物酶催化不对称合成反应或拆分外消旋体合成医药手性中间体具有独特的优势。结合作者自身近年来在该技术领域的实践对相关课题作了介绍,总结了微生物酶催化不对称反应和拆分反应得到手性药物的研究进展。  相似文献   

11.
Biocatalytic asymmetric synthesis has been widely used for preparation of optically active chiral alcohols as the important intermediates and precursors of active pharmaceutical ingredients. However, the available whole-cell system involving anti-Prelog specific alcohol dehydrogenase is yet limited. A recombinant Escherichia coli system expressing anti-Prelog stereospecific alcohol dehydrogenase from Candida parapsilosis was established as a whole-cell system for catalyzing asymmetric reduction of aryl ketones to anti-Prelog configured alcohols. Using 2-hydroxyacetophenone as the substrate, reaction factors including pH, cell status, and substrate concentration had obvious impacts on the outcome of whole-cell biocatalysis, and xylose was found to be an available auxiliary substrate for intracellular cofactor regeneration, by which (S)-1-phenyl-1,2-ethanediol was achieved with an optical purity of 97%e.e. and yield of 89% under the substrate concentration of 5 g/L. Additionally, the feasibility of the recombinant cells toward different aryl ketones was investigated, and most of the corresponding chiral alcohol products were obtained with an optical purity over 95%e.e. Therefore, the whole-cell system involving recombinant stereospecific alcohol dehydrogenase was constructed as an efficient biocatalyst for highly enantioselective anti-Prelog synthesis of optically active aryl alcohols and would be promising in the pharmaceutical industry.  相似文献   

12.
Microalgal photo-biocatalysis is a green technique for asymmetric synthesis. Asymmetric reduction of nonnatural prochiral ketones to produce chiral alcohols by microalgal photo-biocatalysis was studied in this work. Acetophenone (ACP) and ethyl acetoacetate (EAA) were chosen as model substrates for aromatic ketones and β-ketoesters, respectively. Two prokaryotic cyanophyta and two eukaryotic chlorophyta were selected as photo-biocatalysts. The results proved that nonnatural prochiral ketones can be reduced by microalgal photo-biocatalysis with high enantioselectivity. Illumination is indispensable to the photo-biocatalysis. For aromatic ketone, cyanophyta are eligible biocatalysts. For ACP asymmetric reduction reaction, about 45% yield and 97% e.e. can be achieved by the photo-biocatalysis reaction with Spirulina platensis as biocatalyst. On the contrary, chlorophyta are efficient biocatalysts for β-ketoester asymmetric reduction reaction among the four tested algae. For EAA asymmetric reduction reaction, about 70% yield and 90% e.e. can be achieved with Scenedesmus obliquus as biocatalyst. The microalgae used in this study outperformed other characterized biocatalysts such as microbial and plant cells.  相似文献   

13.
Bioorganic asymmetric reduction of carbonyl compounds is one of the most important fundamental and practical reactions for producing chiral alcohols. The stereoselective bioreduction of prochiral ketones of benzofuran derivatives in the presence of yeast-like fungus Aureobasidium pullulans contained in the antifungal Boni Protect agent was studied. Biotransformations were carried out under moderate conditions in an aqueous and two-phase system and without multiplication of the bioreagent. Despite similar chemical structure, each of the used ketone has been reduced with varying efficiency and selectivity. One of the reasons for these results is the presence of a whole set of oxidoreductases in A. pullulans cells that are sensitive to the smallest changes in the structure of prochiral substrate. The unsymmetrical methyl ketones were biotransformed with the highest selectivity. Aureobasidium pullulans microorganism is less effective in the reduction of unsymmetrical halomethyl ketones. The presence of a heteroatom in the alkyl group significantly decreases the selectivity of the process. Finally, as a result of the preferred hydride ion transfer from the dihydropyridine ring of the cofactor to the carbonyl double bond on the re side, secondary alcohols of the S and R configuration were obtained with moderate to high enantioselectivity (55-99%).  相似文献   

14.
Hydroxyamide‐based ligands have occupied a considerable place in asymmetric synthesis. Here we report the synthesis of seven β‐hydroxyamide‐based ligands from the reaction of 2‐hydroxynicotinic acid with chiral amino alcohols and test their effect on the enantioselective reduction of aromatic prochiral ketones with borane in tetrahydofuran (THF). They produce the corresponding secondary alcohols with up to 76% enantiomeric excess (ee) and good to excellent yields (86‐99%). Chirality 26:21–26, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

15.
The increasing demand for biocatalysts in synthesizing enantiomerically pure chiral alcohols results from the outstanding characteristics of biocatalysts in reaction, economic, and ecological issues. Herein, fifteen yeast strains belonging to three food originated yeast species Candida zeylanoides, Pichia fermentans, and Saccharomyces uvarum were tested for their capability for asymmetric reduction of acetophenone to 1‐phenylethanol as biocatalysts. Of these strains, C. zeylanoides P1 showed an effective asymmetric reduction ability. Under optimized conditions, substituted acetophenones were converted to corresponding optically active secondary alcohols in up to 99% enantiomeric excess and at high yields. The preparative scale asymmetric bioreduction of 4‐nitroacetophenone ( 1m ) by C. zeylanoides P1 gave (S)‐1‐(4‐nitrophenyl)ethanol ( 2m ) with 89% yield and > 99% enantiomeric excess. Compound 2m has been obtained in an enantiomerically pure and inexpensive form. Additionally, these results indicate that C. zeylanoides P1 is a promising biocatalyst for the synthesis of chiral alcohols in industry.  相似文献   

16.
Novel bioreduction system for the production of chiral alcohols   总被引:6,自引:0,他引:6  
Chiral alcohols are useful intermediates for many pharmaceuticals and chemicals. Enzymatic asymmetric reduction of prochiral carbonyl compounds is a promising method for producing chiral alcohols. There have been many attempts to construct bioreduction systems for the industrial production of chiral alcohols. This review focuses on the establishment of a novel bioreduction system using an Escherichia coli transformant co-expressing genes for carbonyl reductase and cofactor-regeneration enzyme. This bioreduction system could be useful as an all-purpose catalyst for asymmetric reduction reactions.  相似文献   

17.
As an important organic compound, chiral alcohols are the key chiral building blocks to many single enantiomer pharmaceuticals. Asymmetric reduction of the corresponding prochiral ketones to produce the chiral alcohols by biocatalysis is one of the most promising routes. Asymmetric reduction of different kinds of non-natural prochiral ketones catalyzed by various plants tissue was studied in this work. Acetophenone, 4'-chloroacetophenone and ethyl 4-chloroacetoacetate were chosen as the model substrates for simple ketone, halogen-containing aromatic ketone and beta-ketoesters, respectively. Apple (Malus pumila), carrot (Daucus carota), cucumber (Cucumis sativus), onion (Allium cepa), potato (Soanum tuberosum), radish (Raphanus sativus) and sweet potato (Ipomoea batatas) were chosen as the biocatalysts. It was found that these kinds of prochiral ketoness could be reduced by these plants tissue with high enantioselectivity. Both R- and S-form configuration chiral alcohols could be obtained. The e.e. and chemical yield could reach about 98 and 80% respectively for acetophenone and 4'-chloroacetophenone reduction reaction with favorable plant tissue. And the e.e. and yield for ethyl 4-chloroacetoacetate reduction reaction was about 91 and 45% respectively.  相似文献   

18.
Wipf P  Jayasuriya N  Ribe S 《Chirality》2003,15(3):208-212
Unusual nonlinear asymmetric amplification and chiral ligand loading effects were discovered for the use of catalytic quantities of chiral aminoalcohols in the in situ hydrozirconation-transmetalation-aldehyde addition processes. While the stereochemically most efficient aminothiol ligands demonstrated mechanistically conventional reaction parameters in excellent agreement with Kagan's ML(2) system, the asymmetric induction in the presence of a chiral aminoalcohol was found to vary greatly with loading and %ee of the ligand. Aminothiols remain the ligands of choice for the highly enantioselective formation of allylic alcohols and provide experimentally more predictable reaction variables. However, new, optimized conditions lead to a synthetically useful product %ee using the readily available and scalable aminoalcohol 2a.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号