首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Highly Enantioselective Production of Chiral Secondary Alcohols with Candida zeylanoides as a New Whole Cell Biocatalyst
Authors:Engin ?ahin  Enes Dertli
Institution:Department of Food Engineering, Faculty of Engineering, Bayburt University, Bayburt, Turkey
Abstract:The increasing demand for biocatalysts in synthesizing enantiomerically pure chiral alcohols results from the outstanding characteristics of biocatalysts in reaction, economic, and ecological issues. Herein, fifteen yeast strains belonging to three food originated yeast species Candida zeylanoides, Pichia fermentans, and Saccharomyces uvarum were tested for their capability for asymmetric reduction of acetophenone to 1‐phenylethanol as biocatalysts. Of these strains, C. zeylanoides P1 showed an effective asymmetric reduction ability. Under optimized conditions, substituted acetophenones were converted to corresponding optically active secondary alcohols in up to 99% enantiomeric excess and at high yields. The preparative scale asymmetric bioreduction of 4‐nitroacetophenone ( 1m ) by C. zeylanoides P1 gave (S)‐1‐(4‐nitrophenyl)ethanol ( 2m ) with 89% yield and > 99% enantiomeric excess. Compound 2m has been obtained in an enantiomerically pure and inexpensive form. Additionally, these results indicate that C. zeylanoides P1 is a promising biocatalyst for the synthesis of chiral alcohols in industry.
Keywords:Biocatalysis  Asymmetric reduction  Whole yeast cells     Candida zeylanoides     Biotransformations
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号