首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
目的研究紧密连接蛋白6(claudin 6,CLDN6)对宫颈癌细胞凋亡的影响。方法收集46例宫颈癌患者宫颈癌组织及对应的癌旁组织,应用免疫组织化学、Western blot和RT-PCR检测宫颈组织中CLDN6的表达水平;应用Annexin V/PI双染法流式细胞术检测过表达CLDN6对人宫颈癌细胞系Si Ha细胞凋亡的影响;Western blot检测过表达CLDN6对Si Ha细胞Bcl-xl、Bax、Bcl-2、Akt和p-Akt等蛋白水平的影响。结果宫颈癌组织中CLDN6 m RNA水平及蛋白水平均明显低于癌旁组织;过表达CLDN6使Si Ha细胞凋亡率和促凋亡蛋白Bax水平明显增加,抑凋亡蛋白Bcl-2和Bcl-xl水平和Akt磷酸化水平明显降低。结论 CLDN6可能通过抑制Akt信号通路活性促进宫颈癌细胞凋亡,宫颈癌的发生可能与CLDN6表达减少有关。  相似文献   

2.
正对2018年1~2月新公开的专利进行分析发现,肿瘤抗体治疗技术领域的专利主要包括两个方面。一是新靶点抗体的研发,包括针对CLDN6、CD3、CLDI8、PD-L1、OX40等的肿瘤抗体。二是双特异性抗体的研发,  相似文献   

3.
目的:神经浸润的发生预示胰腺癌预后不良,疼痛的发生与神经浸润密切相关,癌细胞和神经组织间相互作用、连接及粘附可能参与了神经浸润的发生,Claudins作为组成紧密连接的主要成份,在多种肿瘤中有所表达,本实验拟通过观察其成员CLDN11在体内、体外mRNA水平的表达,探讨CLDN11在胰腺癌神经浸润发病机制中的作用,为其诊断及治疗新方法的探索提供一定的实验依据。方法:通过裸鼠坐骨神经周围注射不同人胰腺癌细胞系的方法建立稳定的胰腺癌神经浸润动物模型,成瘤后检测肿瘤组织中CLDN11 mRNA表达水平的差异。同时检测不同人胰腺癌细胞株中CLDN11 mRNA的表达水平的差异。结果:CLDN11在神经侵犯发生率低的肿瘤中的表达高于神经侵犯发生率高的肿瘤,在正常胰腺组织中无表达。CLDN11的mRNA水平在panc-1细胞株中表达高于Capan-2组。结论:经本实验研究发现CLDN11在PNI发生率高的肿瘤组织及高神经浸润能力的细胞株中表达下调,而在PNI发生率低的肿瘤组织及神经浸润能力低的细胞株中高表达,可以得出在神经浸润发生中,CLDN11的表达受到抑制的结论,由此推断如果过表达CLDN11,有可能阻碍PNI的发生及发展;另外,CLDN11表达的下降也可能预示着PNI的发生及进展,因此CLDN11表达的下降可作为PNI发生的预警信号,也可作为胰腺癌基因治疗的靶点,为提高胰腺癌的早期诊断率、改善胰腺癌的预后提供初步的基础实验依据。  相似文献   

4.
mTOR信号通路与癌症治疗   总被引:1,自引:0,他引:1  
陈樑  张红锋 《生命的化学》2005,25(2):127-129
哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)是一种非典型的丝氨酸/苏氨酸蛋白激酶,在细胞的生长、分化、增殖、迁移和存活上扮演了重要的角色。由于mTOR信号转导通路在细胞周期进程中发挥了重要作用,而细胞周期进程调节异常与许多疾病尤其是癌症的发生、发展有关,因此mTOR信号通路的失调可引起多种癌症。mTOR的特异性抑制剂雷帕霉素及其衍生物CCI-779能抑制mTOR的功能,使细胞阻滞在G。期,并引起凋亡。CCI-779作为抗癌药物已分别进入Ⅱ期临床。通过临床实验CCI-779显示出较高的抗癌活性和相对较小的副作用。越来越多的实验证据显示,mTOR信号转导通路的抑制剂可开发成为潜在的肿瘤特异性治疗药物。  相似文献   

5.
目的: 为获得抗人CD24分子成熟多肽核心蛋白(hCD24N)的多克隆抗体。方法: 制备CD24表达阳性的人肿瘤细胞cDNA,采用PCR法扩增hCD24N的编码基因,构建pGEX-KGV-hCD24N原核表达质粒;转化大肠杆菌BL21(DE3),乳糖诱导表达;经GST亲和柱层析、SDS-PAGE和Western blotting制备并鉴定纯化的GST-StraptagII-hCD24N融合蛋白;免疫新西兰大白兔制备抗血清并用rProtein A亲和柱层析纯化多克隆IgG抗体;用间接ELISA法测定抗体效价,Western blotting鉴定抗体特异性,同时采用细胞免疫荧光检测技术对抗体的特异性和应用可行性作进一步评价。结果: 实现了hCD24N基因的克隆以及在原核细胞中的可溶性重组融合表达,得到了纯化后的目的融合蛋白,并以其为免疫原获得了效价高于1:100 000的抗hCD24N多克隆抗体,Western blotting及细胞免疫荧光检测证明该抗体与当前市售的抗人CD24抗体具有相似的免疫反应特异性,并且能够与CD24阳性人肿瘤细胞表达并加工的高度糖基化CD24天然分子发生特异性抗原-抗体反应。结论: 抗hCD24N多克隆抗体的成功制备为进一步以CD24分子为靶点的肿瘤生物学基础研究以及相关癌症的诊断试剂开发奠定基础。  相似文献   

6.
hNOK抗体的制备及肺癌组织中NOK的表达检测   总被引:2,自引:0,他引:2  
Novel Oncogene with Kinase-domain (NOK)是一个新的肿瘤相关基因, 其结构上?与受体蛋白相似, 具有一个蛋白激酶结构域。过量表达NOK会导致肿瘤的产生与转移。为了更进一步研究生理状态下NOK的功能, 需要制备NOK特异性的抗体。利用GST融合蛋白制备了人源NOK的多克隆抗体, 并进行了纯化。检测表明所得的抗体具有很高的滴度, 能够特异性检测NOK蛋白的表达。使用该抗体进行了人肺癌组织的免疫组化检测, 发现该抗体能够高效识别组织内源性表达的NOK蛋白, 可为肺癌的诊断提供依据。  相似文献   

7.
Novel Oncogene with Kinase-domain (NOK)是一个新的肿瘤相关基因, 其结构上?与受体蛋白相似, 具有一个蛋白激酶结构域。过量表达NOK会导致肿瘤的产生与转移。为了更进一步研究生理状态下NOK的功能, 需要制备NOK特异性的抗体。利用GST融合蛋白制备了人源NOK的多克隆抗体, 并进行了纯化。检测表明所得的抗体具有很高的滴度, 能够特异性检测NOK蛋白的表达。使用该抗体进行了人肺癌组织的免疫组化检测, 发现该抗体能够高效识别组织内源性表达的NOK蛋白, 可为肺癌的诊断提供依据。  相似文献   

8.
LINE-1编码蛋白L1-ORF1的原核表达纯化和多克隆抗体制备   总被引:1,自引:0,他引:1  
目的: 制备具有肿瘤组织特异性表达的L1-ORF1蛋白多克隆抗体并进行初步应用研究。方法:采取基因工程表达方法制备L1-ORF1蛋白,免疫家兔制备多克隆抗体,间接ELISA检测抗体效价,Western blot和细胞免疫荧光方法检测抗体特异性,免疫检测验证其识别肿瘤细胞内L1-ORF1蛋白的特异性。结果:制备的抗L1-ORF1蛋白多克隆抗体具有很高的敏感性与特异性,免疫学检测表明该抗体不仅能检测出正常细胞中瞬时表达的L1-ORF1蛋白,而且可检测出肿瘤细胞中天然表达的L1-ORF1蛋白。结论:制备的多克隆抗体具有较高的敏感性与特异性,为以后该抗体的进一步应用奠定了基础。  相似文献   

9.
汤怡  周强  王琦  程浩 《病毒学报》2011,27(5):416-420
进行人乳头瘤病毒6b型(Human papillomavirus type 6b,HPV6b)E7蛋白原核表达并制备其多克隆抗体。用已构建的pGEX-4T-2/HPV6bE7原核表达载体诱导表达大量可溶性融合蛋白GST-HPV6bE7,用Glutathione-Sepharose 4B亲和柱和凝血酶纯化获取HPV6b型E7蛋白。将纯化的E7蛋白免疫新西兰兔并纯化为多克隆抗体IgG。采用Western-Blot及免疫荧光法分析该抗体的效价及特异性。十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)分析显示,异丙基-β-D-硫代半乳糖苷(IPTG)诱导3~6h后pGEX-4T-2/HPV6bE7表达载体在大肠杆菌中高水平表达可溶性融合蛋白。纯化的E7蛋白免疫新西兰兔后可获得兔多克隆抗体IgG。经Western-Blot及免疫荧光鉴定,兔抗IgG具有高效价性和抗HPV6bE7蛋白特异性。获取纯化的HPV6b型E7蛋白具有较好的免疫原性,其免疫兔产生的多克隆抗体IgG效价高,特异性好,有望进一步用于HPV6b型的生物学功能研究和免疫学效应研究。  相似文献   

10.
新型冠状病毒严重急性呼吸综合征冠状病毒2(SARS-CoV-2)感染引发的新型冠状病毒肺炎(COVID-19)疫情在全球持续流行,疫苗的研发和推广使用是阻止新冠疫情的关键手段。SARS-CoV-2核衣壳蛋白(NP)作为病毒的主要结构蛋白,是疫苗开发的潜在候选靶点。鞭毛素B(FlaB)可作为免疫佐剂,增强抗原的免疫原性。本研究对NP和NP-FlaB融合蛋白的免疫原性开展了研究,利用大肠杆菌表达系统分别表达纯化了NP、NP-FlaB融合蛋白,将抗原通过皮下或鼻内途径免疫BALB/c小鼠,分析血清中NP特异性免疫球蛋白G(IgG)、黏膜中NP特异性免疫球蛋白A(IgA)和NP特异性细胞因子分泌的T细胞应答。结果表明:一次皮下免疫NP或NP-FlaB融合蛋白足以引起抗NP的血清IgG抗体反应,能有效诱导分泌白细胞介素4(IL-4)的NP特异性效应T细胞,但NP和NP-FlaB融合蛋白组别之间无显著性差异;鼻内途径免疫下,NP-FlaB融合蛋白免疫组血清中NP特异性IgG抗体滴度和肺内黏膜IgA抗体滴度显著高于NP组。整体结果显示,SARS-CoV-2 NP和NP-FlaB融合蛋白具有很强的免疫原性,NPFlaB融合蛋白能引起黏膜免疫应答,两者均可作为SARS-CoV-2疫苗的候选蛋白。SARS-CoV-2 NP及NP-FlaB融合蛋白的免疫原性的探究为后续新冠病毒NP疫苗开发提供了新的思路和参考。  相似文献   

11.
Claudin-2 (CLDN2), a tight junctional protein, is involved in the chemoresistance in spheroid culture models of human lung adenocarcinoma A549 cells. However, there is no chemical which can improve the sensitivity to anticancer drugs. So far, we reported that DFYSP, a short peptide which mimics the second extracellular loop (ECL2) of CLDN2, decreases CLDN2 expression in A549 cells, but the concentration is relatively high. Here, we found that the effects of VPDSM and DSMKF are stronger than that of DFYSP. Both VPDSM and DSMKF decreased the protein levels of CLDN2 without affecting the mRNA levels of CLDN2. The peptide-induced decrease in CLDN2 expression was suppressed by monodansylcadaverine (MDC), a clathrin-dependent endocytosis (CDE) inhibitor, and chloroquine, a lysosome inhibitor. CLDN2 was colocalized with ZO-1, an adapter protein, in tight junctions (TJs) under control conditions, whereas it disappeared from the TJs in the peptide-treated cells. Quartz crystal microbalance assay showed that both peptides can bind to recombinant CLDN2 protein. Both peptides increased permeability to paracellular transport marker lucifer yellow. In three-dimensional spheroid culture models, both peptides enhanced the sensitivity to doxorubicin, a cytotoxic anticancer drug, which was inhibited by MDC. We suggest that VPDSM and DSMKF enhance the chemosensitivity to anticancer drugs in aggregated adenocarcinoma cells mediated by the CDE pathway and lysosomal degradation of CLDN2 in lung adenocarcinoma cells. VPDSM and DSMKF, which mimic the ECL2 of CLDN2, may become novel adjuvant therapeutic drugs for lung adenocarcinoma.  相似文献   

12.
Zheng A  Yuan F  Li Y  Zhu F  Hou P  Li J  Song X  Ding M  Deng H 《Journal of virology》2007,81(22):12465-12471
Hepatitis C virus (HCV) is a global challenge to public health. Several factors have been proven to be critical for HCV entry, including the newly identified claudin-1 (CLDN1). However, the mechanism of HCV entry is still obscure. Presently, among the 20 members of the claudin family identified in humans so far, CLDN1 has been the only member shown to be necessary for HCV entry. Recently, we discovered that Bel7402, an HCV-permissive cell line, does not express CLDN1 but expresses other members of claudin family. Among these claudins, CLDN9 was able to mediate HCV entry just as efficiently as CLDN1. We then examined if other members of the claudin family could mediate entry. We show that CLDN6 and CLDN9, but not CLDN2, CLDN3, CLDN4, CLDN7, CLDN11, CLDN12, CLDN15, CLDN17, and CLDN23, were able to mediate the entry of HCV into target cells. We found that CLDN6 and CLDN9 are expressed in the liver, the primary site of HCV replication. We also showed that CLDN6 and CLDN9, but not CLDN1, are expressed in peripheral blood mononuclear cells, an additional site of HCV replication. Through sequence comparison and mutagenesis studies, we show that residues N38 and V45 in the first extracellular loop (EL1) of CLDN9 are necessary for HCV entry.  相似文献   

13.
Claudins and occludin constitute the major transmembrane proteins of tight junctions (TJs). We have previously identified the human homologue of the murine Cldn1, CLDN1 (SEMP1) that is expressed in normal, mammary gland-derived epithelial cells but is absent in most human breast cancer cell lines. To investigate the potential functions of CLDN1 protein in tumor and normal epithelial cells, we developed an I-NGFR retroviral vector and monoclonal anti-CLDN1 antibody. In subconfluent and confluent breast cancer cells, MDA-MB-435 and MDA-MB-361, endogenous CLDN1 expression was not detected by an anti-CLDN1 monoclonal antibody by Western blot analysis or quantitative RT-PCR. When CLDN1-negative breast cancer cell lines were transduced with a CLDN1 retrovirus the cells express CLDN1 mRNA constitutively as shown by quantitative RT-PCR. Immunofluorescence analyses of the CLDN1 retroviral transduced breast tumor cells using monoclonal antibodies against CLDN1 reveals a subcellular distribution at cell-cell contact sites similar to the CLDN1 homing pattern in T47-D cells, which express endogenous CLDN1. This cell-cell contact co-localization of CLDN1 was evident in CLDN1-transduced breast tumor cells which fail to express occludin protein (MDA-MB-361 and MDA-MB-435) and express relatively little ZO-1 protein (MDA-MB-435), suggesting that other proteins may be responsible for targeting of CLDN1 to cell-cell contact sites. The re-expression of CLDN1 decreases the paracellular flux of 3 and 40 kDa dextran despite the absence of occludin in the MDA-MB-361 tumor cells. Our findings indicate that in CLDN1-negative breast tumor cells, the basal protein partner requirements for physiological homing of the CLDN1 protein are intact, and that CLDN1 gene transfer and protein expression itself might be sufficient to exert a TJ-mediate gate function in metastatic tumor cells even in the absence of other TJ-associated proteins, such as occludin.  相似文献   

14.
Chemotherapy resistance is a major problem in the treatment of cancer, but the underlying mechanisms are not fully understood. We found that the expression levels of claudin-1 (CLDN1) and 3, tight junctional proteins, are upregulated in cisplatin (CDDP)-resistant human lung adenocarcinoma A549 (A549R) cells. A549R cells showed cross-resistance to doxorubicin (DXR). Here, the expression mechanism and function of CLDN1 and 3 were examined. CLDN1 and 3 were mainly localized at tight junctions concomitant with zonula occludens (ZO)-1, a scaffolding protein, in A549 and A549R cells. The phosphorylation levels of Src, MEK, ERK, c-Fos, and Akt in A549R cells were higher than those in A549 cells. The expression levels of CLDN1 and 3 were decreased by LY-294002, a phosphoinositide 3-kinase (PI3K) inhibitor, and BAY 11-7082, an NF-κB inhibitor. The overexpression of CLDN1 and 3 decreased the paracellular permeability of DXR in A549 cells. Hypoxia levels in A549R and CLDN1-overexpressing cells (CLDN1/A549) were greater than those in A549, mock/A549, and CLDN3/A549 cells in a spheroid culture model. In contrast, accumulation in the region inside the spheroids and the toxicity of DXR in A549R and CLDN1/A549 cells were lower than those in other cells. Furthermore, the accumulation and toxicity of DXR were rescued by CLDN1 siRNA in A549R cells. We suggest that CLDN1 is upregulated by CDDP resistance through activation of a PI3K/Akt/NF-κB pathway, resulting in the inhibition of penetration of anticancer drugs into the inner area of spheroids.  相似文献   

15.
Claudin-4 (CLDN4) is a vital member of tight-junction proteins that is often overexpressed in cancer and other malignancies. The three-dimensional structure of human CLDN4 was constructed based on homology modeling approach. A total of 265 242 molecules from the National Cancer Institute (NCI) database has been utilized as a dataset for this study. In the present work, structure-based virtual screening is performed with the NCI database using Glide. By molecular docking, 10 candidate molecules with high scoring functions, which binds to the active site of CLDN4 were identified. Subsequently, molecular dynamics simulations of membrane protein were used for optimization of the top-three lead compounds (NCI110039, NCI344682, and NCI661251) with CLDN4 in a dynamic system. The lead molecule from NCI database NCI11039 (purpurogallin carboxylic acid) was synthesized and cytotoxic properties were evaluated with A549, MCF7 cell lines. Our docking and dynamics simulations predicted that ARG31, ASN142, ASP146, and ARG158 as critically important residues involved in the CLDN4 activity. Finally, three lead candidates from the NCI database were identified as potent CLDN4 inhibitors. Cytotoxicity assays had proved that purpurogallin carboxylic acid had an inhibitory effect towards breast (MCF7) and lung (A549) cancer cell lines. Computational insights and in vitro (cytotoxicity) studies reported in this study are expected to be helpful for the development of novel anticancer agents.  相似文献   

16.
The claudin (CLDN) family of transmembrane proteins plays a critical role in the maintenance of epithelial and endothelial tight junctions. In addition to their function in preserving the structure of tight junctions, CLDNs might also play a role in the maintenance of the cytoskeleton and in cell signalling. Interestingly, several studies have recently reported specific CLDN family members to be overexpressed in a wide variety of cancer types. Although their functional role in cancer progression remains unclear, the differential expression of these proteins between tumour and normal cells, in addition to their membrane localisation, makes them prime candidates for cancer therapy. Preclinical studies have shown that tumour cells overexpressing CLDNs can be successfully targeted via several approaches, including the use of anti-CLDN antibodies as well as the cytolytic enterotoxin from Clostridium perfringens. Further studies are needed to determine the potential systemic toxicity of this approach considering the ubiquitous expression of CLDNs in the body, but CLDN-targeted therapeutics appear to have promise in the treatment of cancer.  相似文献   

17.
Pancreatic ductal neoplasms exhibit gastric epithelium–like characteristics. In this study, we evaluated the expression of claudin-18 (CLDN18), a gastric epithelium–associated claudin, in pancreatic intraepithelial neoplasias (PanINs), intraductal papillary mucinous neoplasms (IPMNs), mucinous cystic neoplasms (MCNs), and pancreatic ductal adenocarcinomas (PDACs) using immunohistochemistry. We observed a high level of expression of CLDN18 in PanINs (31/32, 97%), IPMNs (61/65, 95%), and MCNs (4/5, 80%) using ordinary tissue section analysis. Furthermore, we observed a high level of CLDN18 expression in PDACs (109/156, 70%) using tissue microarray analysis. However, the normal pancreatic duct or the ductal metaplasia of the acinar cells was not immunoreactive. Comparative analysis of CLDN18 and phenotypic markers in IPMNs revealed that simultaneous expression of CLDN18 and intestinal markers frequently occurred, even in intestinal-type IPMNs. CLDN18 variant 2 mRNA was expressed and was similarly upregulated by phorbol 12–myristate 13–acetate (PMA) treatment in pancreatic cancer cell lines and in a gastric cancer cell line. An inhibitor of pan-PKC (GF109203X) completely suppressed this upregulation in pancreatic cancer cells. These results indicate that CLDN18, a marker for the early carcinogenetic process, is commonly expressed in precursor lesions of PDAC. Activation of the PKC pathway might be involved in CLDN18 expression associated with pancreatic carcinogenesis.  相似文献   

18.
19.
20.
Human claudin-3 (CLDN3) is a tetraspanin transmembrane protein of tight junction structures and is known to be over-expressed in some malignant tumors. Although a specific monoclonal antibody (MAb) against the extracellular domains of CLDN3 would be a valuable tool, generation of such MAbs has been regarded as difficult using traditional hybridoma techniques, because of the conserved sequence homology of CLDN3s among various species. In addition, high sequence similarity is shared among claudin family members, and potential cross-reactivity of MAb should be evaluated carefully. To overcome these difficulties, we generated CLDN3-expressing Chinese hamster ovary and Sf9 cells to use an immunogens and performed cell-based screening to eliminate cross-reactive antibodies. As a result, we generated MAbs that recognized the extracellular loops of CLDN3 but not those of CLDN4, 5, 6, or 9. Further in vitro studies suggested that the isolated MAbs possessed the desired binding properties for the detection or targeting of CLDN3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号