首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 539 毫秒
1.
超声破裂载基因微泡增强心肌细胞报告基因的转染与表达   总被引:1,自引:0,他引:1  
Wang GZ  Hu SJ  Zheng ZL  Sun J  Li J  Zheng X  Zhu ZH  Yao YM 《中国应用生理学杂志》2005,21(4):371-375,i0009
目的:通过超声破裂载基因微泡介导报告基因心肌细胞转染,探讨其能否增强心肌细胞外源基因转染与表达.方法:以β-galactosidase质粒为报告基因,将其与自制氟碳气体微泡粘附,制备载基因微泡.利用诊断性超声破裂微泡进行体外心肌细胞基因转染;以磷酸钙共沉淀转染为阳性对照并将其以不同方式与超声破裂微泡技术联合应用,以期进一步增强基因转染效果.分别采用原位染色及酶学定量检测β-galactosidase表达水平,同时进行细胞活性检测.结果:超声破裂载基因氟碳气体微泡(PESDA)转染组心肌细胞β-galactosidase表达水平可达单纯质粒转染组60倍(P<0.01).磷酸钙共沉淀转染3.67倍(P<0.01)超声强度、微泡浓度对超声破裂介导基因转染效果有明显影响.超声破裂微泡技术与磷酸钙共沉淀联合应用可进一步提高报告基因的表达(P<0.05),即使在磷酸钙转染后6 h,超声破裂微泡仍能明显增强报告的基因的表达(P<0 05).结论:超声破裂微泡技术是一种高效基因转染方法,其不但能增加DNA转染,而且增强入胞后基因的表达.超声破裂微泡与其它基因转染技术联合应用能进一步增加基因转染效率.  相似文献   

2.
目的:观察自制载多西紫杉醇脂质微泡联合超声对人肝癌HepG2细胞的抑制作用。方法:通过薄膜分散法制备载多西紫杉醇脂质微泡,观察其形态,测定粒径大小、包封率、载药量及稳定性等性质;将人肝癌HepG2细胞随机分为5组,对照组、多西紫杉醇组(DOC组)、多西紫杉醇联合超声组(DOC+US组)、载多西紫杉醇脂质微泡组(DLLM组)、载多西紫杉醇脂质微泡联合超声组(DLLM+US组),CCK-8法检测细胞毒性,倒置显微镜观察细胞凋亡的形态,DAPI荧光染色法观察凋亡细胞核的改变。结果:载多西紫杉醇脂质微泡形态光滑圆整,无黏连;粒径分布范围为170~590 nm,平均粒径为350 nm;Zeta电位为-5.2 mV;微泡的包封率为80.0%,载药量为18.5%;4℃条件下保存14天性质稳定;DLLM+US组较其他各组对肿瘤细胞有更为明显的抑制增殖及诱导凋亡效应(P〈0.01)。结论:自制载多西紫杉醇脂质微泡粒径小,包封率高,稳定性好,此微泡联合超声对人肝癌HepG2细胞有明显抑制作用,载多西紫杉醇脂质微泡有望成为一种新型抗肿瘤给药途径。  相似文献   

3.
为探讨载氢-纳米氧化铈微泡对小鼠辐射损伤的防护作用。本研究检测载氢-纳米氧化铈微泡的表征,并将60只BALB/c小鼠随机分为正常对照组、照射对照组、载氢-纳米氧化铈微泡组。小鼠经6Gy x射线一次性全身照射(剂量率2 Gy/min)。于照射后3 d和8 d处死小鼠,检测其外周血细胞数、脾脏和胸腺指数、骨髓和脾脏组织病理学变化。结果显示,照射后3 d和8 d,与正常对照组相比,载氢-纳米氧化铈微泡组和照射对照组的白细胞均明显下降,相比照射对照组,载氢-纳米氧化铈微泡组有改善(p<0.05或p<0.01);而载氢-纳米氧化铈微泡组和照射对照组的红细胞数和血红蛋白均略有下降,但差异无统计学意义。与正常对照组相比,微泡组的胸腺指数、脾脏指数均有下降,和照射对照组相比,载氢-纳米氧化铈微泡组的胸腺指数明显改善(p<0.05或p<0.01)。照射后3 d,与正常对照组相比,照射对照组的骨髓细胞较少,存在细胞碎片,载氢-纳米氧化铈微泡组骨髓细胞数量略有减少,存在细胞核松散现象。而照射后8 d,与正常对照组相比,照射对照组的骨髓细胞几乎找不到,载氢-纳米氧化铈微泡组骨髓细胞有一定数量,存在细胞凋亡现象。本研究表明,载氢-纳米氧化铈微泡通过保护造血组织、改善造血功能,对机体起到一定的辐射防护作用。  相似文献   

4.
当今世界,肿瘤已经成为威胁人类健康的重大疾病。在肿瘤疾病中,化疗可控制肿瘤的生长和转移,增强放疗的疗效,是治疗肿瘤疾病的主要手段之一。而肿瘤多药耐药是影响化疗药物疗效、引起化疗失败的重要原因,影响肿瘤患者的治愈效果,降低生存率。如何提高化疗的疗效,延长肿瘤患者的寿命成为医学界的难题。纳米载药系统是生物医学领域研究的热点,相对于单一药物,纳米载药体现了许多优越性,具有良好的应用前景。纳米级颗粒更有利于药代动力学,这些纳米载药颗粒通过被动和主动的机制表现出在全身血液循环寿命延长,持续的药物释放动力,使其能更好的在肿瘤细胞中积累而发挥作用,提高化疗的疗效。本文综述了肿瘤多药耐药研究中主要的纳米载体以及它们在逆转多药耐药方面的应用,并展望载药系统的有更多更好的发展趋势。  相似文献   

5.
近年来将纳米载药系统应用于肿瘤靶向递药的研究层出不穷。与正常组织相比,肿瘤组织具有较低的pH环境、大量新生血管生成、 不规则的血流灌注、局部缺氧等特异性的微环境,利用这些特点进行合理的纳米载药系统设计能够实现肿瘤部位的高效递药及深层穿透, 显著提高肿瘤治疗效果。针对现有的肿瘤靶向纳米载药系统的构建与设计方法进行综述,以阐述纳米载药系统在肿瘤靶向传递中的研究进展  相似文献   

6.
:"治疗性血管新生" 是利用外源性血管生长因子或基因促进缺血部位新生血管形成,达到改善缺血部位血液供应而起到治 疗的目的,该方法为缺血性疾病的治疗提供了新的思路。目前研究的多种与血管生成相关的因子中,血管内皮生长因子(Vascular Endothelial Growth Factor,VEGF)是公认的最具特异性且作用最强的促进血管生长因子。但由于外源性血管生长因子重组蛋白在 体内半衰期短,试验中难以长时间持续给药起到刺激新血管生成及成熟的作用。研究表明通过超声破坏微泡技术可使基因转染 的靶细胞持续表达该基因。因此,应用超声靶向微泡破坏技术使VEGF 基因在缺血部位持续表达,可起到治疗性血管新生的作 用。本文将就超声微泡介导VEGF基因转染治疗缺血性疾病研究进展进行综述。  相似文献   

7.
超声空化效应和超声微泡在生物医学中的应用   总被引:1,自引:0,他引:1  
近年来,随着超声技术在医疗领域的广泛应用及超声造影剂研制的进展,空化效应和超声造影剂协同运用作为一种高效、安全、操作简单,且具有一定靶向性的无创治疗手段,在基因治疗、药物输送、溶栓和治栓,以及炎症与肿瘤的靶向诊断与治疗方面显示了巨大的运用潜力。简要综述了超声空化效应和超声微泡的治疗机制及应用。  相似文献   

8.
目的:以角蛋白作为药物载体材料,制备智能响应性药物递送系统,研究其药物装载和释放性能。方法:利用去溶剂法制备角蛋白纳米颗粒(KNP),以罗丹明B(RB)和姜黄素(Cur)为亲水性和疏水性模式药物,制备载药KNP。利用钨灯丝扫描电镜(SEM)、动态光散射(DLS)、傅里叶变换红外光谱(FTIR)和药物体外释放实验等对KNP的尺寸、形貌、结构、载药和释药性能进行研究。结果:成功制备出粒径均一、约为300 nm 的KNP,能够装载亲水性和疏水性药物。载药颗粒在体外释放研究中表现出pH和氧化还原双重响应性。结论:利用去溶剂法,简便、安全地制备了分散性良好且具有pH和氧化还原双重响应性释放特性的角蛋白载药纳米颗粒,为角蛋白作为智能响应型药物递送载体的研究和应用提供了参考。  相似文献   

9.
血脑屏障(blood-brain barrier, BBB)是一种介于外周循环系统与中枢神经系统之间的动态结构,起着守门员的作用,在维持机体内环境稳定的同时也阻碍了大多数治疗性药物进入大脑。聚焦超声联合微泡以非侵入的方式瞬时、局部可逆开放BBB,有利于药物分子的跨脑转运和中枢神经系统疾病的多功能诊疗。该文详细介绍了血脑屏障的结构、功能以及超声与微泡的发展历程,对聚焦超声联合微泡开放BBB的潜在机制、影响因素以及在脑部疾病中的最新研究进展进行了总结,并对其在临床实践中的应用前景进行了展望。  相似文献   

10.
李晶  郭亮  崔海信  崔博  刘国强 《植物学报》2020,55(4):513-528
农药是一类用于防治作物病虫草害、保障粮食生产与安全的化学物质。传统农药剂型载药粒子粒径粗大, 有效利用率低, 用量大, 对生态环境造成严重危害。农药纳米剂型可以提高载药系统的分散性、稳定性及生物活性, 是克服传统剂型功能缺陷、提高农药有效利用率、减少环境污染的重要科学途径。研究纳米农药粒子在植物体内的吸收与转运行为, 对于理解纳米农药与植物的互作方式, 揭示其在植物体内的吸收作用机制及生物累积效应, 以及明确其生物安全性具有重要意义。该文从纳米农药在植物体内的吸收转运影响因素、机制、分析方法及其生物安全性4个方面进行综述, 阐明了无机和有机纳米农药在植物体内的吸收转运模式及研究手段, 并展望了其应用前景, 以期为纳米农药的设计、构建及合理安全使用提供理论与技术支撑。  相似文献   

11.
J. Wischhusen  F. Padilla 《IRBM》2019,40(1):10-15

Background

Ultrasound-targeted microbubble destruction (UTMD) is a type of ultrasound therapy, in which low frequency moderate power ultrasound is combined with microbubbles to trigger cavitation. Cavitation is the process of oscillation of gas bubbles causing biophysical effects such as pushing and pulling or shock waves that permeabilize biological barriers. In vivo, cavitation results in tissue permeabilization and is used to enable local delivery of nanomedicine. While cavitation can occur in biological liquids when high pressure ultrasound is applied, the use of microbubbles as cavitation nuclei in UTMD largely facilitates the induction of cavitation. UTMD is intensively studied for drug delivery into tumor tissue, but also for the activation of anti-tumor immune responses. The first clinical studies of UTMD-mediated chemotherapy delivery confirmed safety and efficacy of this approach.

Aim

The present review summarizes ultrasound settings, cavitation approaches, biophysical mechanisms of drug delivery, drug carriers, and pre-clinical and clinical applications of UTMD for drug delivery into tumors.  相似文献   

12.
《Molecular membrane biology》2013,30(4-6):190-205
Abstract

Vascular-targeted drug delivery systems could provide more efficient and effective pharmaceutical interventions for treating a variety of diseases including cardiovascular, pulmonary, inflammatory, and malignant disorders. However, several factors must be taken into account when designing these systems. The diverse blood hemodynamics and rheology, and the natural clearance process that tend to decrease the circulation time of foreign particles all lessen the probability of successful carrier interaction with the vascular wall. An effective vascular-targeted drug delivery system must be able to navigate through the bloodstream while avoiding immune clearance, attach to the vascular wall, and release its therapeutic cargo at the intended location. This review will summarize and analyze current literature reporting on (1) nanocarrier fabrication methods and materials that allow for optimum therapeutic encapsulation, protection, and release; (2) localization and binding dynamics of nanocarriers as influenced by hemodynamics and blood rheology in medium-to-large vessels; (3) blood cells' responses to various types of nanocarrier compositions and its effects on particle circulation time; and (4) properties that affect nanocarrier internalization at the target site.  相似文献   

13.
Abstract

Vascular-targeted drug delivery systems could provide more efficient and effective pharmaceutical interventions for treating a variety of diseases including cardiovascular, pulmonary, inflammatory, and malignant disorders. However, several factors must be taken into account when designing these systems. The diverse blood hemodynamics and rheology, and the natural clearance process that tend to decrease the circulation time of foreign particles all lessen the probability of successful carrier interaction with the vascular wall. An effective vascular-targeted drug delivery system must be able to navigate through the bloodstream while avoiding immune clearance, attach to the vascular wall, and release its therapeutic cargo at the intended location. This review will summarize and analyze current literature reporting on (1) nanocarrier fabrication methods and materials that allow for optimum therapeutic encapsulation, protection, and release; (2) localization and binding dynamics of nanocarriers as influenced by hemodynamics and blood rheology in medium-to-large vessels; (3) blood cells' responses to various types of nanocarrier compositions and its effects on particle circulation time; and (4) properties that affect nanocarrier internalization at the target site.  相似文献   

14.
摘要 目的:制备肿瘤微环境响应释放的靶向二硫化钼纳米载药体系,并评价其载药量和释药性能。方法:以水热法合成的MoS2纳米片为基底,利用MoS2纳米片上的S空缺位点连接硫辛酸聚乙二醇羧酸,然后通过酰胺反应连接精氨酸-甘氨酸-天冬氨酸(RGD)靶向分子,再连接上交联剂3-(2-吡啶二硫代)丙酸N-琥珀酰亚胺酯(SPDP),得到药物载体MoS2-PEG-RGD-SPDP(MPRS),MPRS进一步与巯基化的阿霉素(DOX)反应,形成MPRS-DOX纳米载药体系。通过透射电子显微镜(TEM),X-射线光电子能谱仪(XPS)以及纳米粒度电位仪对合成的材料进行表征;利用紫外可见分光光度计测试MPRS的载药性能,采用荧光分光光度计考察MPRS-DOX的释药性能。结果:成功合成MPRS-DOX纳米载药体系,其粒径大小在200 nm左右,Zeta电位为+28.2 mV;其载药效率为86.8%,载药量为53.5%。体外释药实验表明,在10 mM 谷胱甘肽(GSH)和pH=5.5的条件下DOX释放量最多。结论:成功制备了粒径合适的MPRS-DOX纳米载药体系,MPRS-DOX具有GSH和pH双重响应性,可实现预期的模拟肿瘤微环境内控制释放药物。这种GSH和pH双重响应的纳米载药体系为新一代刺激响应型纳米载药系统的构建提供了新的思路。  相似文献   

15.
皮肤是人体最大的器官,也为药物的递送提供了重要途径。经皮给药是药物以皮肤为媒介,透过皮肤吸收的途径。因此,皮肤角质层是经皮给药的最大限速障碍。纳米经皮给药系统,具有提高透皮效率、缓释性、避免药物肝首过效应、减少副作用等优点,是通过纳米制剂与皮肤组织之间的相互作用实现的。其中,纳米制剂的结构和组分与其发挥皮肤促渗效用密切相关。对纳米制剂与皮肤质构效关系深入透彻的了解,有助于新型透皮纳米制剂的设计,并利用综合手段构建安全、高效、实用的经皮给药系统。  相似文献   

16.
Gene therapy has great potential for human diseases. Development of efficient delivery systems is critical to its clinical translation. Recent studies have shown that microbubbles in combination with ultrasound (US) can be used to facilitate gene delivery. An aim of this study is to investigate whether the combination of US-targeted microbubble destruction (UTMD) and polyethylenimine (PEI) (UTMD/PEI) can mediate even greater gene transfection efficiency than UTMD alone and to optimize ultrasonic irradiation parameters. Another aim of this study is to investigate the biological effects of PHD2-shRNA after its transfection into H9C2 cells. pEGFP-N1 or eukaryotic shPHD2-EGFP plasmid was mixed with albumin-coated microbubbles and PEI to form complexes for transfection. After these were added into H9C2 cells, the cells were exposed to US with various sets of parameters. The cells were then harvested and analyzed for gene expression. UTMD/PEI was shown to be highly efficient in gene transfection. An US intensity of 1.5 W/cm2, a microbubble concentration of 300μl/ml, an exposure time of 45s, and a plasmid concentration of 15μg/ml were found to be optimal for transfection. UTMD/PEI-mediated PHD2-shRNA transfection in H9C2 cells significantly down regulated the expression of PHD2 and increased expression of HIF-1α and downstream angiogenesis factors VEGF, TGF-β and bFGF. UTMD/PEI, combined with albumin-coated microbubbles, warrants further investigation for therapeutic gene delivery.  相似文献   

17.
Abstract

Phospholipid micelles have proven to be the versatile pharmaceutical nanocarrier of choice for the delivery of poorly soluble chemotherapeutics for cancer therapy using various treatment modalities. Phospholipid micelles are typically expected to increase the accumulation of the loaded drugs in tumour tissues by taking advantage of the enhanced permeability and retention effect and by ligand-mediated active targeting. Furthermore, by tailoring the composition of the micelles, it is possible to enhance the intracellular delivery of the cargo. This review highlights the important advancements in our laboratory with polyethyleneglycol phosphatidylethanolamine (PEG-PE)-based micellar drug delivery systems for improvement of the therapeutic efficacy of poorly soluble anticancer drugs.  相似文献   

18.
Abstract

Efficient and site-specific delivery of therapeutic drugs is a critical challenge in clinical treatment of cancer. Nano-sized carriers such as liposomes, micelles, and polymeric nanoparticles have been investigated for improving bioavailability and pharmacokinetic properties of therapeutics via various mechanisms, for example, the enhanced permeability and retention (EPR) effect. Further improvement can potentially be achieved by conjugation of targeting ligands onto nanocarriers to achieve selective delivery to the tumour cell or the tumour vasculature. Indeed, receptor-targeted nanocarrier delivery has been shown to improve therapeutic responses both in vitro and in vivo. A variety of ligands have been investigated including folate, transferrin, antibodies, peptides and aptamers. Multiple functionalities can be incorporated into the design of nanoparticles, e.g., to enable imaging and triggered intracellular drug release. In this review, we mainly focus on recent advances on the development of targeted nanocarriers and will introduce novel concepts such as multi-targeting and multi-functional nanoparticles.  相似文献   

19.
Vascular-targeted drug delivery systems could provide more efficient and effective pharmaceutical interventions for treating a variety of diseases including cardiovascular, pulmonary, inflammatory, and malignant disorders. However, several factors must be taken into account when designing these systems. The diverse blood hemodynamics and rheology, and the natural clearance process that tend to decrease the circulation time of foreign particles all lessen the probability of successful carrier interaction with the vascular wall. An effective vascular-targeted drug delivery system must be able to navigate through the bloodstream while avoiding immune clearance, attach to the vascular wall, and release its therapeutic cargo at the intended location. This review will summarize and analyze current literature reporting on (1) nanocarrier fabrication methods and materials that allow for optimum therapeutic encapsulation, protection, and release; (2) localization and binding dynamics of nanocarriers as influenced by hemodynamics and blood rheology in medium-to-large vessels; (3) blood cells' responses to various types of nanocarrier compositions and its effects on particle circulation time; and (4) properties that affect nanocarrier internalization at the target site.  相似文献   

20.
作为基因治疗中的非病毒基因载体,阳离子纳米载体可通过电荷作用与核酸类药物相结合,具有广阔的应用前景。然而,其细胞毒 性,主要表现为诱导细胞凋亡,限制了其临床开发与应用,也成为阳离子纳米载体研究所关注的重点。揭示和准确评价阳离子纳米载体的 细胞毒性及其机制,将有助于设计和开发更安全、更高效地用于基因传递的阳离子纳米载体。综述常用作基因传递系统的阳离子纳米载体 材料阳离子脂质体、聚乙烯亚胺、多聚赖氨酸、聚苯乙烯纳米粒以及其他阳离子聚合物的细胞毒性及其机制研究进展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号