首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 188 毫秒
1.
非生物逆境胁迫下植物钙信号转导的分子机制   总被引:13,自引:1,他引:12  
张和臣  尹伟伦  夏新莉 《植物学通报》2007,24(1):114-121,122
Ca^2+作为植物细胞中最重要的第二信使,参与植物对许多逆境信号的转导。在非生物逆境条件下,植物细胞质内的钙离子在时间、空间及浓度上会出现特异性变化,即诱发产生钙信号。钙信号再通过其下游的钙结合蛋白进行感受和转导,进而在细胞内引起一系列的生物化学反应以适应或抵制各种逆境胁迫。目前在植物细胞中发现Ca^2+/CDPK、Ca^2+/CaM和Ca^2+/CBL3类钙信号系统,研究表明它们与非生物逆境胁迫信号转导密切相关。本文通过从植物在非生物逆境条件下钙信号的感受、转导到产生适应性和抗性等方面,介绍钙信号转导分子机制的一些研究进展。  相似文献   

2.
逆境胁迫下ABA与钙信号转导途径之间的相互调控机制   总被引:2,自引:0,他引:2  
Ca2+信号是植物应答各种逆境胁迫响应的一个重要组分,它在植物抗病、抗虫及适应非生物胁迫反应中起着重要的作用.Caz+信号作为第二信使在激素信号转导尤其是ABA信号转导过程中发挥着重要作用.研究表明,当植物受到如干旱、低温、盐害等环境胁迫时,细胞迅速积累ABA,胞内钙离子浓度瞬间升高,然后钙离子浓度呈现忽高忽低的震荡现象.在植物细胞中发现Caz+/CDPK、Caz+/CaM和Caz+/CBL三类钙信号系统,它们与逆境胁迫信号转导密切相关.本文通过综述植物在逆境条件下,ABA与钙信号的产生、转导及产生适应性和抗性等方面,介绍了ABA与钙信号之间的相互调节机制.  相似文献   

3.
植物蛋白激酶与作物非生物胁迫抗性的研究   总被引:3,自引:0,他引:3  
干旱、盐碱、高温等非生物逆境胁迫严重影响作物生长发育、产量和品质。在遭受非生物逆境的威胁时,植物通过信号受体,可感知、转导胁迫信号,启动一系列抗逆相关基因的表达,最终缓解或抵御非生物逆境胁迫对植物造成的危害。其中,蛋白激酶和蛋白磷酸酯酶的磷酸化/去磷酸化作用在植物感受外界胁迫信号的分子传递过程中起到开关的作用。正常情况下,蛋白激酶磷酸化开启信号转导途径,启动相应的抗逆基因表达反应;当信号消失后,蛋白激酶去磷酸化将信号转导途径关闭,达到调控植物正常生长的目的。因此,蛋白激酶在调控感受胁迫信号、启动各种非生物逆境胁迫响应中起到了极其重要的作用。近年来,对植物蛋白激酶参与非生物胁迫响应的研究倍受关注。本文阐述了不同类型蛋白激酶在改良作物非生物胁迫抗性上的应用,为进一步研究提供资料。  相似文献   

4.
类受体蛋白激酶(receptor-like protein kinase,RLK)是植物信号转导网络中的重要成员,参与介导生长、发育以及逆境胁迫应答等多种细胞代谢过程.在植物细胞中已发现和克隆了富含亮氨酸重复区型(LRR)、凝集素型(lectin-like)和细胞壁相联型(WAK)等不同的RLK亚家族.这些RLK能够感受多种发育和外界环境胁迫信号, 并在植物对非生物胁迫的响应过程中发挥重要的调控作用.本文结合当今国内外研究进展,简述植物RLK的典型结构域特征,详细介绍多种RLK在植物逆境信号识别与转导中发挥的作用,同时对RLK在非生物胁迫应答中的具体作用机制进行了探讨.  相似文献   

5.
植物体内钙信号及其在调节干旱胁迫中的作用   总被引:1,自引:0,他引:1  
钙作为植物体内第二信使广泛参与了植物响应的各种非生物和生物胁迫的信号传导。胁迫信号通过激活位于细胞质膜上的钙离子通道,产生胞质内特异性的钙信号,传递至钙信号感受蛋白,如钙调素(calmodulin,CaM)、钙依赖蛋白激酶(Ca2+-dependent protein kinases,CDPK)和类钙调磷酸酶B蛋白(calcineurin B-like protein,CBL)等,进而引起胞内一系列生理生化变化,最终对胁迫做出响应。钙信号在植物响应干旱胁迫信号系统中起枢纽作用,主要通过调节气孔运动,水通道蛋白(aquaporin,AQP)和抗氧化酶活性来减少水分流失,提高水分利用率,最终降低干旱对植物细胞的伤害,并具有一定的生态学功能。该文对近年来国内外有关植物体内钙信号的研究进展以及在干旱逆境中的调节作用进行综述,并对今后的研究做了展望。  相似文献   

6.
钙信使在植物适应非生物逆境中的作用   总被引:38,自引:1,他引:37  
综述了非生物逆境胁迫下植物体内钙信号的产生,特点及植物在适应逆境中钙信使系统的可能作用。  相似文献   

7.
钙依赖的蛋白激酶与植物抗逆性   总被引:2,自引:0,他引:2  
植物钙依赖的蛋白激酶(Calcium-dependent protein kinases,CDPKs)是细胞Ca2 信号的受体,同时具有Ca2 受体蛋白和Ser/Thr蛋白激酶的功能。许多植物CDPKs基因受环境胁迫刺激发生表达水平的改变,这些基因在植物逆境胁迫的Ca2 信号转导中起着十分重要的作用,为植物CDPKs抗逆功能的研究和植物的抗逆遗传改良提供了理论基础和基因资源。  相似文献   

8.
孙清鹏  王小菁 《植物学报》2003,20(4):481-488
植物伤反应包括伤信号的产生、传递、感知和转导。植物伤反应信号通路是一网络系统。茉莉酸类是植物伤反应中的重要信号分子,乙烯、ABA、系统素、水杨酸、过氧化氢等也参与伤信号转导。伤反应信号通路与其他生物、非生物胁迫反应信号通路交互作用,使植物能够在时空上对不同的胁迫做出正确响应。  相似文献   

9.
植物伤反应中的茉莉酸类信号   总被引:9,自引:0,他引:9  
植物伤反应包括伤信号的产生、传递、感知和转导。植物伤反应信号通路是一网络系统。茉莉酸类是植物伤反应中的重要信号分子,乙烯、ABA、系统素、水杨酸、过氧化氢等也参与伤信号转导。伤反应信号通路与其他生物、非生物胁迫反应信号通路交互作用,使植物能够在时空上对不同的胁迫做出正确响应。  相似文献   

10.
褪黑素(melatonin, MT)与其他传统五大类激素相比,其鉴定仅有20多年的历史,是一种新兴植物激素,是有机体中具有多种生理功能的多效信号分子。在植物中,MT被称为植物褪黑素(phytomelatonin),它不仅调节种子萌发、根系构型、气孔运动、生物节律和开花与衰老,还通过激活抗氧化系统的活力,清除活性氧(reactive oxygen species, ROS),从而减轻胁迫造成的氧化胁迫、渗透胁迫、蛋白变性和细胞损伤,最终使植物应答生物和非生物胁迫。本文基于MT代谢及其在植物应答非生物胁迫中的最新研究进展,总结MT在植物中的合成与分解代谢,归纳逆境胁迫下MT通过直接清除ROS和/或触发信号转导途径,上调抗逆相关基因表达,继而激活渗透调节系统和抗氧化系统的活力,促进逆境蛋白和次生代谢物质的合成,稳定光合作用和碳代谢,减少ROS的积累和细胞氧化损伤,最终提高植物对高温、低温、干旱、盐渍、重金属、紫外辐射和水涝等非生物胁迫的抵抗能力。本文为理解MT的代谢、生理功能及细胞信号转导途径奠定了理论基础,并指出未来的研究方向。  相似文献   

11.
Considerable progresses have taken place both in the methodology available to study changes in intracellular cytosolic calcium and in our understanding of calcium signaling cascades. It is generally accepted that the global calcium signal system functions importantly in coping with plant abiotic stresses, especially drought stress, which has been proved further by the recent transgenic and molecular breeding reports under soil water deficits. In plant cells, calcium plays roles as a universal transducer coupling a wide range of extracellular stimuli with intracellular responses. Different extracellular stimuli trigger specific calcium signatures: dynamics, amplitude and duration of calcium transients specify the nature, implication and intensity of stimuli. Calcium-binding proteins (sensors) play a critical role in decoding calcium signatures and transducing signals by activating specific targets and corresponding metabolic pathways. Calmodulin (CAM) is a calcium sensor known to regulate the activity of many mammalian proteins, whose targets in plants are now being identified. Higher plants possess a rapidly growing list of CAM targets with a variety of cellular functions. Nevertheless, many targets appear to be unique to higher plant cells and remain characterized, calling for a concerted effort from plant and animal scientists to elucidate their functions. To date, three major classes of plant calcium signals encoding elements in the calcium signal system, including calcium-permeable ion channels,Ca(2)+/ H(+) antiporters and Ca(2)+-ATPases, are responsible for drought stress signal transduction directly or indirectly. This review summarizes the current knowledge of calcium signals involved in plant abiotic stresses and presents suggestions for future focus areas of study.  相似文献   

12.
Calcium is a crucial messenger in many growth and developmental processes in plants. The central mechanism governing how plant cells perceive and respond to environmental stimuli is calcium signal transduction, a process through which cellular calcium signals are recognized, decoded, and transmitted to elicit downstream responses. In the initial decoding of calcium signals, Ca2+ sensor proteins that bind Ca2+ and activate downstream signaling components are implicated, thereby regulating specific physiological and biochemical processes. After calcineurin B-like proteins (CBLs) sense these Ca2+ signatures, these proteins interact selectively with CBL-interacting protein kinases (CIPKs), thereby forming CBL/CIPK complexes, which are involved in decoding calcium signals. Therefore, specificity, diversity, and complexity are the main characteristics of the CBL-CIPK signaling system. However, additional CBLs, CIPKs, and CBL/CIPK complexes remain to be identified in plants, and the specific functions of their abiotic and biotic stress signaling will need to be further dissected. Therefore, a much-needed synthesis of recent findings is important to further the study of CBL-CIPK signaling systems. Here, we review the structure of CBLs and CIPKs, discuss the current knowledge of CBL–CIPK pathways that decode calcium signals in Arabidopsis, and link plant responses to a variety of environmental stresses with specific CBL/CIPK complexes. This will provide a foundation for future research on genetically engineered resistant plants with enhanced tolerance to various environmental stresses.  相似文献   

13.
Calcium/calmodulin-mediated signal network in plants   总被引:24,自引:0,他引:24  
  相似文献   

14.
Ca2+在植物生长发育和环境适应过程中发挥着中心调控作用,钙信号是植物生长发育和逆境响应的主要调控因子,钙结合蛋白是植物钙信号传导途径的最重要组分之一,然而植物钙结合蛋白在体内和体外与Ca2+结合的技术体系还有待完善和发展。为了系统总结植物钙结合蛋白的鉴定方法与技术,本文从定性结合、定量结合和结合方式等角度,综述了植物钙结合蛋白在体内和体外条件下与Ca2+结合的原理、方法、特点和应用前景,详细阐述了近年来的主要检测方法,并对其今后的发展趋势作了展望。本文将为植物钙结合蛋白的分离、功能鉴定和作用机制的研究提供技术支撑。  相似文献   

15.
The complexity of calcium profiles observed in plant cells has led to the realization that specific patterns of calcium propagation (now termed calcium signatures) encode specific information and relay it to downstream elements (effectors) for translation into corresponding cellular responses in higher plants. The concept of calcium signatures is now well established and the tight control of the temporal and spatial characteristics of cytosolic calcium alterations is considered to be responsible for the specificity of various cellular responses, in particular to environment-induced stresses. To date, three major classes of plant calcium sensors responsible for drought-stress signal transduction during soil water deficit have been identified. Valuable pieces of the calcium signal-specificity puzzle are being put together and are illustrated here for the calcium-mediated signal-transduction cascades that operate in the responses of higher plants to soil environmental deficits.  相似文献   

16.
大豆类钙调磷酸酶B亚基GmCBL1互作候选蛋白的筛选   总被引:2,自引:0,他引:2  
Ca2+是非生物胁迫信号转导途径中的重要信号分子,植物类钙调磷酸酶B亚基蛋白(CBL,calcineurin B-like proteins)是一类重要的钙信号受体蛋白,主要通过与其他蛋白的特异结合传递信号,使植物形成对非生物胁迫的响应。本实验室已经获得大豆Gm CBL1基因,功能鉴定显示Gm CBL1增强了转基因拟南芥对非生物胁迫的耐性。为了进一步研究Gm CBL1的作用机理,本研究构建诱饵载体p GBKT7::Gm CBL1,利用酵母双杂交技术筛选大豆Gm CBL1的互作蛋白。通过对筛选获得的106个蛋白基因测序和Blast比对分析,并根据其可能的生理功能对这些候选蛋白归类,整理得到4类蛋白:能量代谢相关蛋白、修饰蛋白、防御蛋白、钙信号转导相关蛋白。筛选得到候选蛋白的功能预测初步表明,大豆Gm CBL1参与多条信号途径,为进一步研究探索大豆CBL介导的抗逆信号转导途径奠定了基础。  相似文献   

17.
18.
Phenylpropanoids are secondary metabolites produced by plants. They, by differential expression, are involved in responses to biotic and abiotic stresses and confer plant plasticity. In addition, they are synthesized under normal conditions during the fruit-ripening process. Therefore, the understanding of the mechanics involved in the accumulation of these compounds in plants is of extreme importance for the development of plants with greater resistance and tolerance to biotic and abiotic stresses, and plants with greater functional potential. There is evidence that one of the pathways of the induction of phenylpropanoids is dependent on abscisic acid (ABA) and it is generated by a signaling cascade involving calcium (Ca2+) and Ca2+-dependent protein kinases (CDPKs). Plants have several Ca2+ binding proteins that act as cellular sensors and represent the first points of signal transduction. CDPKs are mono-molecular Ca2+-sensor/kinase-effector proteins, which perceive Ca2+ signals and translate them into protein phosphorylation and thus represent an ideal tool for signal transduction. However, the mechanisms involved in the ABA–CDPK–phenylpropanoids crosstalk under stress conditions and during fruit ripening remains uncertain. Therefore, this review seeks to surface a new line of evidence as an attempt to understand the manner in which the induction of phenylpropanoids occurs in plants.  相似文献   

19.
Calcium ion (Ca2+) is one of the very important ubiquitous intracellular second messenger molecules involved in many signal transduction pathways in plants. The cytosolic free Ca2+ concentration ([Ca2+]cyt) have been found to increased in response to many physiological stimuli such as light, touch, pathogenic elicitor, plant hormones and abiotic stresses including high salinity, cold and drought. This Ca2+ spikes normally result from two opposing reactions, Ca2+ influx through channels or Ca2+ efflux through pumps. The removal of Ca2+ from the cytosol against its electrochemical gradient to either the apoplast or to intracellular organelles requires energized ‘active’ transport. Ca2+-ATPases and H+/Ca2+ antiporters are the key proteins catalyzing this movement. The increased level of Ca2+ is recognised by some Ca2+-sensors or calcium-binding proteins, which can activate many calcium dependent protein kinases. These kinases regulate the function of many genes including stress responsive genes, resulted in the phenotypic response of stress tolerance. Calcium signaling is also involved in the regulation of cell cycle progression in response to abiotic stress. The regulation of gene expression by cellular calcium is also crucial for plant defense against various stresses. However, the number of genes known to respond to specific transient calcium signals is limited. This review article describes several aspects of calcium signaling such as Ca2+ requiremant and its role in plants, Ca2+ transporters, Ca2+-ATPases, H+/ Ca2+-antiporter, Ca2+-signature, Ca2+-memory and various Ca2+-binding proteins (with and without EF hand).Key Words: Calcium binding proteins, Ca2+ channel, Ca2+-dependent protein kinases, Ca2+/H+ antiport, calcium memory, calcium sensors, calcium signatures, Ca2+-transporters, EF hand motifs, plant signal transduction  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号