首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Ricin toxin is a glycoprotein which catalytically inactivates eukaryotic ribosomes by depurination of a single adenosine residue from the 28S ribosomal RNA. The enzymatic activity is present in the A chain of the toxin molecule, whereas the B chain contains two binding sites for galactose. Since it is highly potent in inhibiting protein synthesis, the A chain is used to prepare cytotoxic conjugates effective against tumor cells. Such chimeric proteins are highly selective and have a wide range of clinical applications. Extensive preclinical studies on these conjugates require large amounts of purified A chain. Native ricin A chain is heterogeneous, since plants produce a number of isoforms of ricin toxin. Purified, native preparations often contain two types of ricin A chain which differ in the extent of glycosylation. By cloning and expressing the gene of A chain, one could obtain homogeneous toxin molecules devoid of carbohydrates. In addition, structural changes in the toxin polypeptide could be introduced by in vitro mutagenesis, which can improve the pharmacological properties and antitumor activity. Earlier methods of expression strategies using Escherichia coli have yielded only moderate levels of expression. In the present study, the coding region of ricin A chain was cloned into pET3b, a high-level expression vector under the control of the T7 promoter. Recombinant ricin A chain produced by this construct has an additional 14 amino acid residues at the NH2 terminus. Subsequently, a NdeI site was created at the 5' end of the gene by oligonucleotide-directed mutagenesis. The modified fragment was then introduced into pET3b vector to produce toxin polypeptide identical to the native sequence.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
利用原生质体瞬间表达系统证实,即使用大量蓖麻毒素A链基因DNA导入诸葛莱(Ory-chophoragmus violaceus)原生质体,其蛋白质合成仍不被抑制。但是诸葛菜和灰叶烟草(Nicotiana plumbagenifolia)原生质体的蛋白质合成却容易被表达的白喉毒素A链所抑制。用CaMV 35 S启动子和Kozak序列控制的白喉毒素A链嵌合基因DNA在3h内能完全中止灰叶烟草原生质体蛋白质合成,此期间蛋白合成总量仅为正常时5%左右。  相似文献   

3.
采用pExSecⅠ载体系统进行了蓖麻毒素A链的原核表达,经CM-Sepharose一步纯化后,获得了纯度约80%的重组蓖麻毒素A链.将其与几种天然单链核糖体失活蛋白进行了超螺旋DNA裂解研究和无细胞体系中蛋白合成抑制试验,结果表明,重组蓖麻毒素A链具有类似于天然单链核糖体失活蛋白的活性,但两种测活方法之间没有明显的相关性  相似文献   

4.
Transferrin (Tf) receptor-variant Chinese hamster ovary cells have been isolated by selection for resistance to two Tf-toxin conjugates. The hybrid toxins contain Tf covalently linked to ricin A chain or a genetically engineered diphtheria toxin fragment. The Tf-receptor-variant (TRV) cells do not have detectable cell-surface Tf receptor; they do not bind fluorescein-Tf or 125I-Tf. TRV cells are at least 100-fold more resistant to the Tf-diphtheria toxin conjugate than are the parent cells. The TRV cells have retained sensitivity to native diphtheria toxin, indicating that the increased resistance to the conjugate is correlated with the loss of Tf binding. The endocytosis of fluorescein-labeled alpha 2-macroglobulin is normal in TRV cells, demonstrating that the defect does not pleiotropically affect endocytosis. Since these cells lack endogenous Tf receptor activity, they are ideally suited for studies of the functional expression of normal or altered Tf receptors introduced into the cells by cDNA transfection. One advantage of this system is that Tf binding and uptake can be used to monitor the behavior of the transfected receptor. A cDNA clone of the human Tf receptor has been transfected into TRV cells. In the stably expressing transfectants, the behavior of the human receptor is very similar to that of the endogenous Chinese hamster ovary cell Tf receptor. Tf binds to cell surface receptors, and is internalized into the para-Golgi region of the cell. Iron is released from Tf, and the apo-Tf and its receptor are recycled back to the cell surface. Thus, the TRV cells can be used to study the behavior of genetically altered Tf receptors in the absence of interfering effects from endogenous receptors.  相似文献   

5.
重组蓖麻毒素A链蛋白的可溶性表达、纯化与抗原性分析   总被引:1,自引:0,他引:1  
用PCR方法从克隆质粒pUC19-RTA中扩增出蓖麻毒素A(RTA)链基因,序列分析正确后,亚克隆到原核表达质粒pET-His中,构建重组表达质粒pET-HisRTA,再转化到E.coliBL21(DE3)plysS中获得表达工程菌株BL21/pET-HisRTA。该工程菌在30℃经0.4mmol/LIPTG诱导4h后获得可溶性表达的目的蛋白,约占菌体总蛋白的18.45%,SDS-PAGE分析显示表达的蛋白区带与RTA相对分子量相符,约32kDa左右。表达产物经Ni-NTA亲和层析法一步纯化,蛋白纯度约达97.53%,并可得到约18mg/L重组RTA蛋白。Western印迹和间接ELISA结果证明,重组RTA蛋白与抗天然蓖麻毒素多抗可发生特异性的抗原抗体反应,具有良好的抗原性,这为制备RT特异性抗体及建立RT的检测方法奠定了基础。  相似文献   

6.
蓖麻毒素A链突变体的设计、表达与活性研究   总被引:6,自引:0,他引:6  
利用蛋白质结构同源模建并结合表观静电势分析,设计了拟具有生物学活性的蓖麻毒素A链的突变体.将PCR扩增的突变体基因,导入pKK223-3载体中,于大肠杆菌(E.coli)中获得高效、可溶性表达,而且,确证了表达产物具有预期的生物学活性.  相似文献   

7.
The ribosome-inhibiting toxin ricin binds exposed β1→4 linked galactosyls on multiple glycolipids and glycoproteins on the cell surface of most eukaryotic cells. After endocytosis, internal cell trafficking is promiscuous, with only a small proportion of ricin proceeding down a productive (cytotoxic) trafficking route to the endoplasmic reticulum (ER). Here, the catalytic ricin A chain traverses the membrane to inactivate the cytosolic ribosomes, which can be monitored by measuring reduction in protein biosynthetic capacity or cell viability. Although some markers have been discovered for the productive pathway, many molecular details are lacking. To identify a more comprehensive set of requirements for ricin intoxication, the authors have developed an RNAi screen in Drosophila S2 cells, screening in parallel the effects of individual RNAi treatments alone and when combined with a ricin challenge. Initial screening of 806 gene knockdowns has revealed a number of candidates for both productive and nonproductive ricin trafficking, including proteins required for transport to the Golgi, plus potential toxin interactors within the ER and cytosol.  相似文献   

8.
9.
Studies of RII alpha-deficient B lymphoid cells and stable transfectants expressing the type II alpha regulatory subunit (RII alpha) of cAMP-dependent protein kinase (PKA), which is targeted to the Golgi-centrosomal area, reveal that the presence of a Golgi-associated pool of PKA type II alpha mediates a change in intracellular transport of the plant toxin ricin. The transport of ricin from endosomes to the Golgi apparatus, measured as sulfation of a modified ricin (ricin sulf-1), increased in RII alpha-expressing cells when PKA was activated. However, not only endosome-to-Golgi transport, but also retrograde ricin transport to the endoplasmic reticulum (ER), measured as sulfation and N-glycosylation of another modified ricin (ricin sulf-2), seemed to be increased in cells expressing RII alpha in the presence of a cAMP analog, 8-(4-chlorophenylthio)-cAMP. Thus, PKA type II alpha seems to be involved in both endosome-to-Golgi and Golgi-to-ER transport. Because ricin, after being retrogradely transported to the ER, is translocated to the cytosol, where it inhibits protein synthesis, we also investigated the influence of RII alpha expression on ricin toxicity. In agreement with the other data obtained, 8-(4-chlorophenylthio)-cAMP and RII alpha were found to sensitize cells to ricin, indicating an increased transport of ricin to the cytosol. In conclusion, our results demonstrate that transport of ricin from endosomes to the Golgi apparatus and further to the ER is regulated by PKA type II alpha isozyme.  相似文献   

10.
Ricin, Shiga toxin, and Shiga-like toxin II (SLT-II, Vero toxin 2) exhibit an RNA N-glycosidase activity which specifically removes a single base near the 3' end of 28 S rRNA in isolated rat liver ribosomes and deproteinized 28 S rRNA (Endo Y., Mitsui, K., Motizuki, M., & Tsurugi, K. (1987) J. Biol. Chem. 262, 5908-5912; Endo Y. & Tsurugi, K. (1987) J. Biol. Chem. 262, 8128-8130, Endo, Y., Tsurugi, K., Yutsudo, T., Takeda, Y., Ogasawara, K. & Igarashi, K. (1988) Eur. J. Biochem. 171, 45-50). These workers identified the single base removed, A-4324, by examining a 28 S rRNA degradation product which was generated by contaminating ribonucleases associated with the ribosomes. To determine whether this N-glycosidase activity applies in living cells, we microinjected ricin into Xenopus oocytes. We also microinjected Shiga toxin and a variant of Shiga-like toxin II (SLT-IIv). All three toxins specifically removed A-3732, located 378 nucleotides from the 3' end of 28 S rRNA. This base is analogous to the site observed in rat 28 S rRNA for ricin, Shiga toxin, and SLT-II. Purified, glycosylated, ricin A chain contains this RNA N-glycosidase activity in oocytes. We also demonstrated that the nonglycosylated A subunit of recombinant ricin exhibits this RNA N-glycosidase activity when injected into Xenopus oocytes. Ricin, Shiga toxin, and SLT-IIv also caused a rapid decline in oocyte protein synthesis for nonsecretory proteins.  相似文献   

11.
12.
W C Lin  L A Culp 《BioTechniques》1991,11(3):344-8, 350-1
Three different histochemical marker genes--E. coli beta-galactosidase gene (lacZ), Drosophila alcohol dehydrogenase gene (ADH) and human placenta alkaline phosphatase gene (ALP)--were cloned into a eukaryotic expression vector also containing the neomycin resistance gene. After calcium phosphate transfection and G418 sulfate selection of recipient BALB/c 3T3 cells, stable transfectants were pooled for histochemical staining. The lacZ-bearing cells produce aqua blue staining for beta-galactosidase; ADH-bearing cells, blue-black staining for alcohol dehydrogenase; and ALP-bearing cells, red staining for alkaline phosphatase. Cells carrying different marker genes can be easily differentiated by double-staining protocols. In addition, various photographic films can be used to enhance the colors of specific histochemically tagged cell classes. These plasmid vectors, providing selectability with the neomycin resistance gene and ultrasensitivity of alternative histochemical marker genes, will be very effective in virtually any biological system requiring analyses of multiple cell clones or classes in culture model systems or in situ.  相似文献   

13.
14.
15.
In contrast to the mouse immunoglobulin heavy chain and kappa light chain genes, very little is known about the regulation of expression of the immunoglobulin lambda light chain locus. To identify elements responsible for lambda gene regulation we mapped DNaseI hypersensitive sites associated with a functionally rearranged lambda 1 gene in nuclei from the myeloma cell line J558L. Tissue-specific hypersensitive sites were identified 2.3 to 2.5 kb upstream of the CAP site of both the lambda 1 gene and the unrearranged variable (V) lambda 2 gene segments. DNA sequences flanking the lambda 1 gene were isolated and tested for their influence on expression of the lambda 1 gene after transfection into myeloma cells and after injection into fertilized mouse eggs. Two enhancer elements were identified downstream of the lambda 1 gene. A proximal element (located 4 to 10 kb 3' of the gene) enhanced expression of a lambda 1 gene in stable myeloma cell transfectants but had no effect on the expression of a heterologous reporter gene in transient assays. A second, distal element, located approximately 30 kb 3' of the gene, enhanced heterologous expression in J558L cells expressing a lambda gene but not in a non-lambda myeloma cell line (SP2/0-Ag14). Co-injection of cosmids containing the lambda 1 gene and both the proximal and distal downstream elements into fertilized mouse eggs resulted in high-level expression of the lambda 1 transgene in B cells of transgenic mice. The identification of these lambda regulatory elements, in addition to contributing to an understanding of lambda gene regulation per se, will facilitate the study of the regulation of differential expression of kappa and lambda light chain genes in the immune system.  相似文献   

16.
A gene encoding the outer capsid glycoprotein (VP7) of simian rotavirus SA11, was genetically linked to the amino terminus of the ricin toxin B subunit (RTB) isolated from castor-oil plant (Ricinus communis) seeds. To assess fusion protein expression in plant cells, the VP7::RTB fussion gene was transferred into potato (Solanum tuberosum) cells by Agrobacterium tumefaciens-mediated transformation methods and transformed plants regenerated. The fusion gene was detected in transformed potato genomic DNA by polymerase chain reaction DNA amplification methods. Immunoblot analysis with anti-SA11 antiserum as the primary antibody verified the presence of VP7::RTB fusion protein in transformed potato tuber tissues. The plant-synthesized fusion protein bound RTB membrane receptors as measured by asialofetuin-enzyme-linked immunosorbent assay (ELISA). The ELISA results indicated that the VP7::RTB fusion protein was biologically active and made up approx 0.03% of total soluble transformed tuber protein. The biosynthesis of receptor binding VP7::RTB fusion protein in potato tissues demonstrates the feasibility of producing monomeric ricin toxin B subunit adjuvant-virus antigen fusion proteins in crop plants for enhanced immunity.  相似文献   

17.
D J Kappes  J L Strominger  D S Monos 《Gene》1991,108(2):245-252
A versatile method that allows efficient detection and selection of both transient and stable transfectants expressing exogenous cell-surface molecules is described and used to generate stable HeLa transfectants expressing each of the human HLA class-II isotypes, specifically the DR1, DQw8 and DPw2 heterodimers. The method combines use of the strong mammalian expression vector, CDM8, and a highly efficient transfection protocol with the powerful technique of immunomagnetic selection. It offers significant advantages in comparison to standard procedures involving co-selection with drug-resistance markers. The transfection efficiency can be assessed 60 h after transfection rather than after three weeks of drug selection. Repeated rounds of immunomagnetic selection applied over the subsequent ten days result in homogeneous populations which express the surface marker of interest stably at high levels, making further subcloning or fluorescence-activated cell sorting unnecessary. Any number of surface products can be transfected into the same cell, the only limitation being the availability of specific monoclonal antibodies (a DP/DR double transfectant is described expressing four exogenous gene products simultaneously). The high sensitivity of immunomagnetic selection and its applicability to large samples allows rescue of transfectants present at very low frequencies. Finally, the technique can be used as a coselection procedure, by analogy with drug coselection, to achieve expression even of non-cell surface products.  相似文献   

18.
Microglial cells, like macrophages, are very sensitive to ricin, a galactose-specific toxic lectin belonging to the family of ribosome-inactivating proteins. This toxin can be taken up by most cells through the binding of its B chain to galactose-containing molecules on the cell membrane. In macrophagic cell types it can be internalised also by mannose receptors which are present on the surface of these cells. Endocytosis of the toxin by either pathway was evaluated by ricin toxicity to primary cultures of rat microglial cells and to a microglial N11 cell line in the presence or absence of lactose and mannan, which compete for the endocytosis via the ricin lectin chain or cellular mannose receptors, respectively. Results were compared with those obtained in cultures of mouse macrophages, human monocytes, and a monocytic JM cell line. All cultures were protected from ricin toxicity more by lactose than by mannan, indicating that ricin endocytosis via its lectin B chain is prevalent over that mediated by cellular mannose receptors. However, a partial protection by mannan was observed in all cases but not-stimulated N11 cells, either in the form of direct protection or of significant additional protection over that afforded by lactose. Mannose receptor expression by N11 cells was negative before, and positive after, treatment with endotoxin, as assessed by the specific binding of 125I-mannose-bovine serum albumin. Moreover, a partial protection from ricin toxicity by mannan was induced in the N11 microglial line after stimulation, consistently with an inducible expression of the mannose receptor by activated cells switched towards a microglial phenotype.  相似文献   

19.
Ricin is a potent A-B toxin that is transported from the cell surface to the cytosol, where it inactivates ribosomes, leading to cell death. Ricin enters cells via endocytosis, where only a minute number of ricin molecules reach the endoplasmic reticulum (ER) lumen. Subsequently, the ricin A chain traverses the ER bilayer by a process referred to as dislocation or retrograde translocation to gain access to the cytosol. To study the molecular processes of ricin A chain dislocation, we have established, for the first time, a human cell system in which enzymatically attenuated ricin toxin A chains (RTA(E177D) and RTA(Δ177-181)) are expressed in the cell and directed to the ER. Using this human cell-based system, we found that ricin A chains underwent a rapid dislocation event that was quite distinct from the dislocation of a canonical ER soluble misfolded protein, null Hong Kong variant of α(1)-antitrypsin. Remarkably, ricin A chain dislocation occurred via a membrane-integrated intermediate and utilized the ER protein SEL1L for transport across the ER bilayer to inhibit protein synthesis. The data support a model in which ricin A chain dislocation occurs via a novel strategy of utilizing the hydrophobic nature of the ER membrane and selective ER components to gain access to the cytosol.  相似文献   

20.

Background

Mechanisms of antibody-mediated neutralization are of much interest. For plant and bacterial A-B toxins, A chain mediates toxicity and B chain binds target cells. It is generally accepted and taught that antibody (Ab) neutralizes by preventing toxin binding to cells. Yet for some toxins, ricin included, anti-A chain Abs afford greater protection than anti-B. The mechanism(s) whereby Abs to the A chain neutralize toxins are not understood.

Methodology/Principal Findings

We use quantitative confocal imaging, neutralization assays, and other techniques to study how anti-A chain Abs function to protect cells. Without Ab, ricin enters cells and penetrates to the endoplasmic reticulum within 15 min. Within 45–60 min, ricin entering and being expelled from cells reaches equilibrium. These results are consistent with previous observations, and support the validity of our novel methodology. The addition of neutralizing Ab causes ricin accumulation at the cell surface, delays internalization, and postpones retrograde transport of ricin. Ab binds ricin for >6hr as they traffic together through the cell. Ab protects cells even when administered hours after exposure.

Conclusions/Key Findings

We demonstrate the dynamic nature of the interaction between the host cell and toxin, and how Ab can alter the balance in favor of the cell. Ab blocks ricin’s entry into cells, hinders its intracellular routing, and can protect even after ricin is present in the target organelle, providing evidence that the major site of neutralization is intracellular. These data add toxins to the list of pathogenic agents that can be neutralized intracellularly and explain the in vivo efficacy of delayed administration of anti-toxin Abs. The results encourage the use of post-exposure passive Ab therapy, and show the importance of the A chain as a target of Abs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号