首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 45 毫秒
1.
血管生成素样蛋白3(angiopoietin—like protein 3,angptl 3)是血管生成素和血管生成素样蛋白家族成员,因其与该家族成员有共同的结构特征而得名,即氨基端与分泌相关的信号肽,介导同源寡聚体形成的螺旋样结构域,一段短的连接肽和羧基端介导配体活性的纤维蛋白原样结构域。Angptl 3是一种分泌蛋白,其mRNA主要在人、鼠的肝脏表达。目前研究表明angptl 3的生物学效应表现在两方面:调节血管生成和脂质代谢。它对血管生成的诱导作用较弱,而对脂质代谢的调节作用较显著,因而在心血管病领域受到极大关注。本文将就angptl 3的研究进展做一综述。  相似文献   

2.
促血管生成素的生物学特点和应用前景   总被引:1,自引:0,他引:1  
促血管生成素(Ang)家族是调节血管生成的一类细胞因子,包括Ang-1、Ang-2、Ang-3和Ang-4等4个成员,Ang-1和Ang-2是其中最重要的成员。Tie-2是Ang家族的共同受体。Ang-1与Tie-2结合后激活下游信号通路,起到抑制内皮凋亡、促进内皮存活和迁移、维持血管完整性的作用;Ang-2则是Ang-1天然的抑制剂,其拮抗的效应与局部血管内皮生长因子(VEGF)的水平有关,VEGF存在时促进新生血管形成,VEGF缺乏时则有利于血管的消退。Ang参与生理和病理性的血管新生,与肿瘤和其他疾病有密切的关系,有广泛的应用前景。  相似文献   

3.
Tie2受体研究进展及其在抗肿瘤治疗中的应用   总被引:2,自引:0,他引:2  
Tie2是胚胎血管发育和肿瘤血管形成都需要的内皮细胞酪氨酸激酶受体,血管生成素(Ang)是其配体。正常成人组织中,Ang/Tie2受体水平较低,用于维持成熟的血管结构;一般癌组织中Ang/Tie2的表达较为活跃。本综述了Ang/Tie2的结构和功能研究的最新进展,Ang/Tie2在血管形成中的重要调节作用,以及可溶性Tie2在治疗肿瘤方面的前景。  相似文献   

4.
血管生成素是一个重要的促血管生成因子,在细胞增殖、迁移和凋亡等过程中均发挥重要作用,但其具体的分子机制尚待阐明.miRNA是一类长约22 nt的小RNA,在转录后水平调控基因的表达,广泛参与各种生物学过程.本文探索了可直接调控血管生成素表达的miRNA,希望为阐明血管生成素的作用机制提供线索.首先,我们利用数据库预测得到8个可能靶向结合血管生成素mRNA 3′端非编码区的miRNA;然后,用实验方法验证它们与血管生成素的靶向关系,发现miR-1208、miR-196b、miR-296、miR-409-3p、miR-570和miR-641这6个miRNA可以不同程度地抑制血管生成素的mRNA和蛋白质表达水平,但只有miR-196b、miR-296、miR-409-3p和miR-641可以直接结合血管生成素mRNA的3′端非编码区;进而,在血管内皮细胞中分别过表达这4个miRNA,发现miR-196b、miR-409-3p和miR-641可以抑制血管内皮细胞的细胞增殖,而miR-196b、miR-296和miR-409-3p可以抑制血管内皮细胞的管腔形成.以上结果表明,细胞内有多个miRNA调控血管生成素的表达,它们可能协调调节血管生成,抑或在血管生成的不同阶段发挥作用.我们的工作还为“一种mRNA可被多种microRNA调节,而一种microRNA可调节多种mRNA”假说提供了部分证据.  相似文献   

5.
血管生成素样蛋白(Angiopoietin-like proteins,Angptls)是与脂类、葡萄糖、能量代谢和血管生成密切相关的蛋白质家族,现已发现8个成员,因其在代谢调控和动物辅助选育方面发挥有重要作用而备受研究人员的关注。以下综述了该蛋白家族的结构、介导的信号通路、上游调控基因及代谢网络等方面,并结合课题组研究工作对其应用于动物育种领域的现状和问题进行了分析,对前景作了展望。  相似文献   

6.
血管生成素样蛋白3(angiopoietin-like protein3,ANGPTL3)是一种分泌蛋白,因其具有血管生成素家族的特征性结构而得名。该蛋白质主要在人和鼠的肝脏表达,可能与脂代谢紊乱、冠心病与动脉粥样硬化、糖尿病、代谢综合征、肾病以及肝癌等疾病有关。因此深入研究该蛋白质与疾病的关系,可望为诊断、治疗、预防相关疾病提供新的途径。  相似文献   

7.
目的探讨血管内皮生长因子(VEGF)和血管生成素(angiopoietin,Ang)在胃癌的表达及其与肿瘤血管生成和临床病理因素的关系。方法采用免疫组化SP法检测84例胃癌和30例癌旁正常组织中VEGF、Ang-1、Ang-2的表达,应用CD34抗体标记微血管内皮细胞,计数微血管密度(MVD),结合临床病理资料进行分析。结果胃癌组织VEGF、Ang-2阳性表达率、MVD值明显高于癌旁正常组织(P(0.05)。VEGF表达与肿瘤大小、侵袭深度、临床分期、淋巴结转移有关(P(0.05),而与患者年龄、性别、组织学类型和分化程度无关,其阳性组的Ang-2阳性表达率、MVD值明显高于阴性组,VEGF的表达与Ang-2、MVD呈正相关。胃癌组织Ang-2表达与肿瘤大小、侵袭深度、淋巴结转移有关(P(0.05),与MVD呈正相关。胃癌Ang-1表达略低于对照组,但无统计学差异(P(0.05),Ang-1的表达与肿瘤侵袭深度和MVD值呈负相关。结论胃癌中VEGF、Ang-2蛋白的过度表达以及Ang-1蛋白的低表达可能在肿瘤血管生成和肿瘤浸润、转移中起重要作用。  相似文献   

8.
血管生成素样蛋白3(angiopoietin-like protein3,ANGPTL3)是血管生成素和血管生成素样蛋白家族成员,主要表达于肝脏。其具有调节脂质代谢和促进血管生成的作用,其中尤以调节脂质代谢的作用显著。探讨ANGPTL3表达调控及功能的分子机制,对于了解代谢性疾病发病机制及寻找新的治疗途径有积极意义。  相似文献   

9.
促红细胞生成素产生肝细胞受体(Eph receptor) 是受体酪氨酸激酶(RTK)家族中最大的亚家族,其介导的双向信号传导对细胞的形态、黏附、运动、增殖、生存及分化都有重要的调控作用。EphA2是Eph受体家族中一个被广泛研究的重要亚型,在白内障和乳腺癌等病理发生过程中发挥了重要作用。既往研究发现:EphA2受体的激酶结构域可结合细胞膜,其激酶活性受磷脂膜的调控,但是相邻的SAM结构域对激酶结构域与脂膜的相互作用以及激酶活性的影响尚不清楚。在此项研究中,通过与磷酸酶PTP1B1-301活性片段共表达的方式,表达、纯化了EphA2受体的胞内段激酶-SAM串联结构域,通过比较胞内段激酶-SAM串联结构域与单独激酶结构域的脂质体结合能力,以及测定对应的激酶活性,发现:EphA2受体胞内段的SAM结构域使其激酶结构域与脂质体(4 mg/mL)的结合能力增强约6倍(P<0.001);磷酸化后的EphA2胞内段激酶-SAM串联结构域结合脂质体(4 mg/mL)的能力比非磷酸化的胞内段激酶-SAM串联结构域提高2.5倍(P<0.05);而结合脂质体后,激酶结构域的激酶活性也被进一步提高,从而形成正反馈。综上所述,本研究的发现提示:EphA2胞内段的酪氨酸激酶结构域与相邻的SAM结构域可形成一个完整的结构功能单位,其激酶活性和脂质体结合能力与单独的激酶结构域相比都形成了明显的差异,我们的这一发现对进一步理解Eph受体家族其他亚型的激酶结构域的活性调控提供了参考与思路。  相似文献   

10.
淀粉样沉积症是致命性的疾病,可以是神经退行性的,也可以是系统性的.该疾病以错误折叠蛋白质的堆积、缠绕成纤维为特征,最终导致受累组织、器官的渐进性坏死.目前,没有有效的治疗手段可以阻止该类疾病的进程.错误折叠蛋白质的累积诱导内质网应激,被认为是退行性疾病的标志.血管生成素不仅可以调节细胞生长和增殖,也在应激条件下细胞存活中发挥作用.最近,发现血管生成素介导的应激反应可以减轻蛋白聚积造成的损伤,提示该蛋白可能在退行性疾病中具有新功能.本综述概述了血管生成素在淀粉样沉积症中的研究进展,特别是描述了血管生成素失调与该类疾病的起始和进展间的关系.我们认为,深入了解血管生成素失调的分子基础有助于发展与蛋白质错误折叠和聚积相关的退行性疾病的治疗方法.  相似文献   

11.
The Tie1 receptor tyrosine kinase was isolated over a decade ago, but so far no ligand has been found to activate this receptor. Here, we have examined the potential of angiopoietins, ligands for the related Tie2 receptor, to mediate Tie1 activation. We show that a soluble Ang1 chimeric protein, COMP-Ang1, stimulates Tie1 phosphorylation in endothelial cells with similar kinetics and angiopoietin dose dependence when compared with Tie2. The phosphorylation of overexpressed Tie1 was weakly induced by COMP-Ang1 also in transfected cells that do not express Tie2. When cotransfected, Tie2 formed heteromeric complexes with Tie1, enhanced Tie1 activation, and induced phosphorylation of a kinase-inactive Tie1 in a ligand-dependent manner. Tie1 phosphorylation was also induced by native Ang1 and Ang4, although less efficiently than with COMP-Ang1. In conclusion, we show that Tie1 phosphorylation is induced by multiple angiopoietin proteins and that the activation is amplified via Tie2. These results should be important in dissecting the signal transduction pathways and biological functions of Tie1.  相似文献   

12.
The Tie receptor tyrosine kinases and their angiopoietin (Ang) ligands play central roles in developmental and tumor-induced angiogenesis. Here we present the crystal structures of the Tie2 ligand-binding region alone and in complex with Ang2. In contrast to prediction, Tie2 contains not two but three immunoglobulin (Ig) domains, which fold together with the three epidermal growth factor domains into a compact, arrowhead-shaped structure. Ang2 binds at the tip of the arrowhead utilizing a lock-and-key mode of ligand recognition-unique for a receptor kinase-where two complementary surfaces interact with each other with no domain rearrangements and little conformational change in either molecule. Ang2-Tie2 recognition is similar to antibody-protein antigen recognition, including the location of the ligand-binding site within the Ig fold. Analysis of the structures and structure-based mutagenesis provide insight into the mechanism of receptor activation and support the hypothesis that all angiopoietins interact with Tie2 in a structurally similar manner.  相似文献   

13.
The angiopoietins act through the endothelial receptor tyrosine kinase Tie2 to regulate vessel maturation in angiogenesis and control quiescence and stability of established vessels. The activating ligand, Ang1 (angiopoietin-1), is constitutively expressed by perivascular cells, and the ability of endothelial cells to respond to the ligand is controlled at the level of the Ang1 receptor. This receptor interacts with the related protein Tie1 on the cell surface, and Tie1 inhibits Ang1 signalling through Tie2. The responsiveness of endothelium to Ang1 is determined by the relative levels of Tie2 and the inhibitory co-receptor Tie1 in the cells. Tie1 undergoes regulated ectodomain cleavage which is stimulated by a range of factors including VEGF (vascular endothelial growth factor), inflammatory cytokines and changes in shear stress. Ectodomain cleavage of Tie1 relieves inhibition of Tie2 and enhances Ang1 signalling. This mechanism regulates Ang1 signalling without requiring changes in the level of the ligand and allows Ang1 signalling to be co-ordinated with other signals in the cellular environment. Regulation of signalling at the level of receptor responsiveness may be an important adaptation in systems in which an activating ligand is normally present in excess or where the ligand provides a constitutive maintenance signal.  相似文献   

14.
The angiopoietins are a family of growth factors critical for development and maintenance of the vasculature. The primary amino acid sequence of the angiopoietins predicts that they are comprised of a coiled-coiled and a fibrinogen-like domain. The coiled-coiled domain mediates ligand multimerization, whereas the fibrinogen domain engages the receptor. This multimerization is required to elicit a ligand-mediated biological effect via activation of their receptor Tie2. In vitro and in vivo knockout studies have suggested that the angiopoietins are chemotactic for endothelial cells. We were interested in ascertaining whether the angiopoietins have this activity within the animal proper. To accomplish this we engineered a dominant-interfering form of angiopoietin (Ang) 1, called Ang1cc. Ang1cc contains the coiled-coiled domain, which can heterodimerize with other angiopoietins produced in the same cell. We show that Ang1cc can inhibit Tie2 activation and can inhibit Ang1 activity in vitro and in vivo.  相似文献   

15.
The receptor tyrosine kinase Tie2, and its activating ligand Angiopoietin-1 (Ang1), are required for vascular remodelling and vessel integrity, whereas Ang2 may counteract these functions. However, it is not known how Tie2 transduces these different signals. Here, we show that Ang1 induces unique Tie2 complexes in mobile and confluent endothelial cells. Matrix-bound Ang1 induced cell adhesion, motility and Tie2 activation in cell-matrix contacts that became translocated to the trailing edge in migrating endothelial cells. In contrast, in contacting cells Ang1 induced Tie2 translocation to cell-cell contacts and the formation of homotypic Tie2-Tie2 trans-associated complexes that included the vascular endothelial phosphotyrosine phosphatase, leading to inhibition of paracellular permeability. Distinct signalling proteins were preferentially activated by Tie2 in the cell-matrix and cell-cell contacts, where Ang2 inhibited Ang1-induced Tie2 activation. This novel type of cellular microenvironment-dependent receptor tyrosine kinase activation may explain some of the effects of angiopoietins in angiogenesis and vessel stabilization.  相似文献   

16.
Angiopoietin-1 (Ang1) and Ang2 are ligands for the receptor tyrosine kinase Tie2. Structural data suggest that the two ligands bind Tie2 similarly. However, in endothelial cells Ang1 activates Tie2 whereas Ang2 can act as an apparent antagonist. In addition, each ligand exhibits distinct kinetics of release following binding. These observations suggest that additional factors influence function and binding of angiopoietins with receptors in the cellular context. Previous work has shown that Ang1 binding and activation of Tie2 are inhibited by Tie1, a related receptor that complexes with Tie2 in cells. In this study we have investigated binding of Ang1 and Ang2 to Tie2 in endothelial cells. In contrast to Ang1, binding of Ang2 to Tie2 was found to be not affected by Tie1. Neither PMA-induced Tie1 ectodomain cleavage nor suppression of Tie1 expression by siRNA affected the ability of Ang2 to bind Tie2. Analysis of the level of Tie1 co-immunoprecipitating with angiopoietin-bound Tie2 demonstrated that Ang2 can bind Tie2 in Tie2:Tie1 complexes whereas Ang1 preferentially binds non-complexed Tie2. Stimulation of Tie1 ectodomain cleavage did not increase the agonist activity of Ang2 for Tie2. Similarly, the Tie2-agonist activity of Ang2 was not affected by siRNA suppression of Tie1 expression. Consistent with previous reports, loss of Tie1 ectodomain enhanced the agonist activity of Ang1 for Tie2. Importantly, Ang2 was still able to antagonize the elevated Ang1-activation of Tie2 that occurs on Tie1 ectodomain loss. Together these data demonstrate that Ang1 and Ang2 bind differently to Tie2 at the cell surface and this is controlled by Tie1. This differential regulation of angiopoietin binding allows control of Tie2 activation response to Ang1 without affecting Ang2 agonist activity and maintains the ability of Ang2 to antagonize even the enhanced Ang1 activation of Tie2 that occurs on loss of Tie1 ectodomain. This provides a mechanism by which signalling through Tie2 can be modified by stimuli in the cellular microenvironment.  相似文献   

17.
Vascular endothelial growth factor (VEGF) is the only angiogenic growth factor capable of inducing an inflammatory response and we have recently demonstrated that its inflammatory effect is mediated by the endothelial synthesis of platelet-activating factor (PAF). Recently discovered, Ang1 and Ang2, upon binding to Tie2 receptor, modulate vascular permeability and integrity, contributing to angiogenesis. Ang1 was initially identified as a Tie2 agonist whereas Ang2 can behave as a context-dependent Tie2 agonist or antagonist. We sought to determine if Ang1 and/or Ang2 could modulate PAF synthesis in bovine aortic endothelial cells (BAEC) and if so, through which intracellular signalling pathways. Herein, we report that Ang1 and Ang2 (1 nM) are both capable of mediating a rapid Tie2 phosphorylation and a rapid, progressive and sustained endothelial PAF synthesis maximal within 4 h (1695% and 851% increase, respectively). Angiopoietin-mediated endothelial PAF synthesis requires the activation of the p38 and p42/44 MAPKs, PI3K intracellular signalling pathways, and a secreted phospholipase A(2) (sPLA(2)-V). Furthermore, angiopoietin-mediated PAF synthesis is partly driven by a relocalization of endogenous VEGF to the cell surface membrane. Our results demonstrate that the angiopoietins constitute another class of angiogenic factors capable of mediating PAF synthesis which may contribute to proinflammatory activities.  相似文献   

18.
Angiogenesis is an essential process in physiological and pathological processes and is well-regulated to maintain the cellular homeostasis by balancing the endothelial cells in proliferation and apoptosis. Angiopoietin-1 (Ang1) regulates angiogenesis as a ligand of Tie 2 receptor tyrosine kinase. However, the regulation pathways are not well-understood. To date, only a few of the signaling molecules involved in the Tie 2 receptor tyrosine kinase-mediated angiogenesis have been identified. In this study, we systematically identified tyrosine-phosphorylated proteins in Ang1-induced signaling cascade in human umbilical vein endothelial cells (HUVECs), employing proteomic analyses combining two-dimensional gel electrophoresis, Western analysis using phosphotyrosine antibody and mass spectrometry (MALDI-TOF MS and nanoLC-ESI-q-TOF tandem MS). We report here the identification, semiquantitative analysis, and kinetic changes of tyrosine-phosphorylated proteins in response to Ang1 in HUVECs and identified 66 proteins among 69 protein spots showing significant changes. Of these, p54nrb was validated as a molecule involved in cell migration. These results suggest that Ang1 induces stabilization of neo-vessel network by regulating the phosphorylations of metabolic and structural proteins.  相似文献   

19.
Obesity and related metabolic diseases, such as type 2 diabetes, hypertension and hyperlipidemia are an increasingly prevalent medical and social problem in developed and developing countries. These conditions are associated with increased risk of cardiovascular disease, the leading cause of death. Therefore, it is important to understand the molecular basis underlying obesity and related metabolic diseases in order to develop effective preventive and therapeutic approaches against these conditions. Recently, a family of proteins structurally similar to the angiogenic-regulating factors known as angiopoietins was identified and designated 'angiopoietin-like proteins' (ANGPTLs). Encoded by seven genes, ANGPTL1-7 all possess an N-terminal coiled-coil domain and a C-terminal fibrinogen-like domain, both characteristic of angiopoietins. ANGPTLs do not bind to either the angiopoietin receptor Tie2 or the related protein Tie1, indicating that these ligands function differently from angiopoietins. Like angiopoietins, some ANGPTLs potently regulate angiogenesis, but ANGPTL3, -4 and ANGPTL6/angiopoietin-related growth factor (AGF) directly regulate lipid, glucose and energy metabolism independent of angiogenic effects. Recently, we found that ANGPTL2 is a key adipocyte-derived inflammatory mediator that links obesity to systemic insulin resistance. In this minireview, we focus on the roles of ANGPTL2 and ANGPTL6/AGF in obesity and related metabolic diseases, and discuss the possibility that both could function as molecular targets for the prevention and treatment of obesity and metabolic diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号