首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Nucleophosmin (NPM1或B23.1)是在细胞核内广泛表达的蛋白磷酸酶,在多方面发挥重要作用,如核糖体合成、中心体复制、细胞周期控制、细胞增殖及转化.NPM1是急性粒细胞白血病(acute myeloid leukemia, AML)中最常见的突变基因之一.红系分化相关基因(erythroid differentiation associated gene, EDAG)是在造血组织特异表达的基因,在造血细胞的增殖与谱系分化调节方面发挥重要作用.在AML病人中,高表达的EDAG与较差的预后相关联.我们前期研究结果显示,EDAG与NPM1相结合并调节NPM1稳定性,但在AML病人体内EDAG与NPM1的关系,及EDAG与NPM突变体(NPMc+)的关系尚未明确.在本文中发现:在AML病人骨髓CD34+细胞中,敲低EDAG表达导致NPM1蛋白稳定性降低并提高了对柔红霉素的敏感性;EDAG虽不与突变体NPMc+相互作用,但在蛋白出核抑制剂(leptomycin B, LMB)作用下,过表达EDAG提高NPMc+蛋白稳定性;表达突变NPMc+的AML病人与表达NPM1蛋白的病人相比,其骨髓CD34+细胞对柔红霉素具有更高的敏感性,且敲低EDAG能微弱提高其敏感性.上述结果表明,EDAG在AML病人药物治疗中发挥的可能作用以及NPMc+ “逃脱”,使EDAG无法保护其稳定性,这提示了在AML病人药物治疗过程中EDAG的潜在作用,同时也提示,携带NPMc+蛋白的AML患者具有较好预后,可能与NPMc+蛋白“逃脱”出EDAG对其稳定性的保护有关.  相似文献   

3.
为研究EDAG在人乳头状甲状腺癌病人组织中的表达及在乳头状甲状腺癌细胞中的作用,利用免疫组化检测31例乳头状甲状腺癌癌组织及癌旁组织中EDAG蛋白的表达,并进行数据分析.包装EDAG敲低慢病毒颗粒,感染乳头状甲状腺癌细胞系K1,建立EDAG敲低稳定细胞株,检测EDAG敲低对细胞增殖、克隆形成、周期和凋亡的影响. 结果显示,EDAG蛋白在乳头状甲状腺癌癌组织中异常高表达,而在对应癌旁组织极低表达或不表达.建立稳定敲低EDAG的K1细胞株,敲低效果达到约96%,敲低EDAG后细胞增殖变缓,倍增时间由18.49±0.19 h变为19.47±0.11 h,且克隆形成能力下降,G0/G1期比例升高,无血清培养时凋亡增多.本文报道了EDAG在乳头状甲状腺癌病人中高表达,且敲低甲状腺癌细胞系K1中内源EDAG抑制细胞增殖,降低细胞克隆形成能力,G0/G1期增多,凋亡升高,提示EDAG异常高表达可能在甲状腺癌发生发展中具有重要作用.  相似文献   

4.
5.
Chou CC  Yung BY  Hsu CY 《Life sciences》2007,80(22):2051-2059
Human myelogenous leukemia K562 cells were induced to undergo megakaryocytic differentiation by long-term treatment with phorbol ester 12-O-tetradecanoyl-phorbol-13-acetate (TPA). The protein level of nucleophosmin/B23 (NPM/B23), a nucleolar protein, was substantially decreased upon TPA treatment. In this study, we found that the proteasome inhibitors blocked the decrease of NPM/B23 protein in response to TPA, suggesting the proteasomes were involved in the downregulation of NPM/B23 upon megakaryocytic differentiation. To investigate the signaling pathway in the downregulation of NPM/B23 during early TPA-induced megakaryocytic differentiation of K562 cells, K562 cells were treated with TPA in the presence of the PKC isozyme-selective inhibitors, GF109203X and Gö 6976, or MEK1 inhibitor, PD98059. The decrease of NPM/B23 protein in the TPA-treated K562 cells was blocked by GF109203X but not by Gö 6976, suggesting the involvement of novel PKCs in the downregulation of NPM/B23 during TPA-induced megakaryocytic differentiation of K562 cells. The application of MEK1 inhibitor PD98059 upon TPA treatment blocked the TPA-induced decrease of NPM/B23 protein and aborted the megakaryocytic differentiation but not to break through the cell growth arrest. Unlike NPM/B23, the degradation of nucleolin in the TPA-treated K562 cells could not be blocked by PD98059 while the TPA-induced megakaryocytic differentiation was abrogated. The decrease of NPM/B23 protein seems to be more correlated with the novel PKC-MAPK-induced megakaryocytic differentiation than another nucleolar protein, nucleolin. Taken together, our results indicated that novel PKC-MAPK pathway was required for the decrease of NPM/B23 during TPA-induced megakaryocytic differentiation.  相似文献   

6.
7.
核仁磷酸蛋白基因(nucleophosmin,NPM1)突变在急性髓系白血病的发生发展中发挥着重要作用,而与白血病分化阻滞的关系尚未完全阐明。为探讨NPM1基因突变对白血病细胞体外分化的影响,将携带NPM1 A型突变(NPM1-mA)的表达质粒载体pEGFPC1-NPM1-mA转染白血病K562细胞系,构建稳定表达NPM1-mA蛋白的细胞株(K562 mA),同时设立野生型NPM1转染组(K562 wt)、空载体转染组(K562 C1)和未处理组(K562)为对照。利用豆蔻酰佛波醇乙酯(PMA)诱导各组细胞分化,瑞氏–吉姆萨染色观察细胞分化的形态改变,计算诱导分化率;相差显微镜计数贴壁细胞数量;流式细胞术分析细胞表面分化抗原CD41的表达。结果显示,PMA作用72 h后,与对照组相比,K562 mA组细胞的诱导分化率及贴壁细胞数明显降低(P〈0.05);同时,CD41的表达受到显著抑制(P〈0.01)。提示NPM1基因突变能够阻滞白血病细胞系K562的体外分化。  相似文献   

8.
目的:研究去泛素化酶USP13对人慢性髓系白血病细胞系K562增殖和凋亡的影响,并进行初步的机制探究。方法:构建pLKO.1-shUSP13-GFP慢病毒干涉载体,慢病毒包装后感染并建立稳定敲低USP13的K562细胞株。免疫印迹检测K562细胞中USP13蛋白的敲低效率。流式细胞术分析敲低USP13对K562细胞增殖和凋亡的影响。免疫共沉淀和蛋白质泛素化实验探究USP13调控K562细胞的分子机制。结果:成功构建pLKO.1-shUSP13-GFP慢病毒干涉载体,同时利用慢病毒体系获得稳定敲低USP13的K562细胞株。流式细胞术结果显示,敲低USP13促进K562细胞凋亡、抑制细胞增殖。分子机制研究发现,敲低USP13通过增强c-Myc泛素化进而导致其蛋白质水平降低。结论:初步揭示了USP13调控K562细胞增殖和凋亡的分子机制,为治疗慢性髓系白血病提供了潜在的靶点。  相似文献   

9.
10.
11.
NPM1突变基因表达抑制K562白血病细胞体外增殖和侵袭   总被引:2,自引:1,他引:1  
核仁磷酸蛋白(nucleophosmin,NPM1)突变是近年发现的在急性髓系白血病中发挥重要作用的基因改变,为探讨NPM1突变对K562白血病细胞体外增殖和侵袭能力的影响,将载体pEGFPC1-NPM1-mA转染K562细胞系,构建稳定表达NPM1突变蛋白的白血病细胞株(K562-mA)。利用细胞生长曲线观察细胞体外增殖能力;流式细胞仪检测细胞周期进程改变;细胞粘附、Transwell实验分别用以观察细胞体外粘附、迁移及侵袭能力。结果发现,NPM1突变转染后K562细胞体外增殖能力明显减弱;同时G1期细胞比例明显增高,S期细胞比例显著减低。与未处理组和空载体转染组细胞相比,K562-mA细胞体外迁移能力有所增加,但细胞粘附及侵袭能力却明显减弱。提示NPM1突变基因的表达能够抑制白血病细胞体外增殖和侵袭能力,为进一步深入探讨NPM1突变在白血病发生发展中的调控机制奠定了良好的基础。  相似文献   

12.
13.
Inhibition of signaling through Ras in BCR-ABL-positive pluripotent K562 cells leads to apoptosis and spontaneous differentiation. However, Ras-induced activation of the mitogen-activated protein kinase ERK has been suggested to play a critical role in either growth or differentiation in different model systems. We studied the role of ERK activation in the growth-promoting and anti-apoptotic effect of Ras and its involvement in hemin-induced nonterminal erythroid differentiation using the BCR-ABL-positive K562 cell line as a model. K562 cells were stably transfected with ERK1 or the dominant inhibitory mutant of ERK1 (ERK1-KR). Overexpression of ERK1-KR inhibited cell growth with an approximately fourfold increase in doubling time and induced apoptosis in K562 cells. Incubation with the MEK1 inhibitor UO126 inhibited cell growth and induced apoptosis in K562 cells in a dose-dependent manner as well. In the presence of exogenously added hemin, K562 cells differentiate into erythroblasts, as indicated by the production of large amounts of fetal hemoglobin. We examined the activation of MAP kinases during hemin-induced differentiation. The ERK1 and 2 activity increased within 2 h post hemin treatment and remained elevated for 24-48 h. During this time, fetal hemoglobin synthesis also increases from 0.8 to 10 pg/cell. There was no activation of JNK or p38 protein kinases. The hemin-induced accumulation of hemoglobin was inhibited in ERK1-KR overexpressing cells and was enhanced in the wild-type ERK1 transfectants. Our results suggest that ERK activation is involved in both growth and hemin-induced erythroid differentiation in the BCR-ABL-positive K562 cell line.  相似文献   

14.
Gene transfer into haematopoietic cells is a challenging approach. The extracellular matrix component fibronectin has been known to modulate the cell cycle dynamics, viability and differentiation of leukaemia cells. Thus, our aim was to investigate the influence of fibronectin substratum on the liposomal transfection of myeloid leukaemia cell lines. Liposomal transfection was performed with K562 and HL-60 as representative lines of transfection-competent and -incompetent myeloid leukaemia cells, respectively. Flow cytometry analyses were performed to determine transfection efficiency monitored by green fluorescent protein (GFP) expression and to assess cell viability and cell cycle status. Quantitation of GFP gene expression and DNA uptake was assayed by real time PCR. The current data showed that the adhesion to fibronectin deteriorated the transfection of K562 cells. In contrary, it enhanced the delivery of plasmid DNA into HL-60 cells. Correspondingly, the adhesion to fibronectin influenced the transfection efficiency mainly by modulating the intracellular presence of plasmid DNA. The cell cycle and viability which is regulated by fibronectin had a minor impact on the success of gene delivery. This phenomenon may be considered as an important factor which may modulate the potential gene transfer approaches for myeloid leukaemia.  相似文献   

15.
We compare the effects of Imatinib mesylate (Glivec) on chronic myeloid leukemia derived cell lines K562 and JURL-MK1. In both cell lines, the cell cycle arrests in G(1)/G(0) phase within 24 h after the addition of 1 microM Imatinib. This is followed by a decrease of Ki-67 expression and the induction of apoptosis. In JURL-MK1 cells, the apoptosis is faster in comparison with K562 cells: the caspase-3 activity reaches the peak value (20 to 30 fold of the control) after about 40 h and the apoptosis proceeds to its culmination point, the DNA fragmentation, within 48 h following 1 microM Imatinib addition. Unlike K562 cells, JURL-MK1 cells possess a probably functional p53 protein inducible by TPA (tetradecanoyl phorbol acetate) or UV-B irradiation. However, no increase in p53 expression was observed in Imatinib-treated JURL-MK1 cells indicating that the difference in the apoptosis rate between the two cell lines is not due to the lack of p53 in K562 cells. Imatinib also triggers erythroid differentiation both in JURL-MK1 and K562 cells. Glycophorin A expression occurred simultaneously with the apoptosis, even at the single cell level. In K562 cells, but not in JURL-MK1 cells, the differentiation process involved increased hemoglobin synthesis. However, during spontaneous evolution of JURL-MK1 cells in culture, the effects produced by Imatinib progressively changed from the fast apoptosis to the more complete erythroid differentiation. We suggest that the apoptosis and the erythroid differentiation are parallel effects of Imatinib and their relative contributions, kinetics and completeness are related to the differentiation stage of the treated cells.  相似文献   

16.
17.
Nucleophosmin (NPM) is a multifunctional protein frequently overexpressed in actively proliferating cells. Strong evidence indicates that NPM is required for embryonic development and genomic stability. Here we report that NPM enhances the proliferative potential of hematopoietic stem cells (HSCs) and increases their survival upon stress challenge. Both short term liquid culture and clonogenic progenitor cell assays show a selective expansion of NPM-overexpressing HSCs. Interestingly, HSCs infected with NPM retrovirus show significantly reduced commitment to myeloid differentiation compared with vector-transduced cells, and majority of the NPM-overexpressing cells remains primitive during a 5-day culture. Bone marrow transplantation experiments demonstrate that NPM promotes the self-renewal of long term repopulating HSCs while attenuated their commitment to myeloid differentiation. NPM overexpression induces rapid entry of HSCs into the cell cycle and suppresses the expression of several negative cell cycle regulators that are associated with G(1)-to-S transition. NPM knockdown elevates expression of these negative regulators and exacerbates stress-induced cell cycle arrest. Finally, overexpression of NPM promotes the survival and recovery of HSCs and progenitors after exposure to DNA damage, oxidative stress, and hematopoietic injury both in vivo and in vitro. DNA repair kinetics study suggests that NPM has a role in reducing the susceptibility of chromosomal DNA to damage rather than promoting DNA damage repair. Together, these results indicate that NPM plays an important role in hematopoiesis via mechanisms involving modulation of HSC/progenitor cell cycle progression and stress response.  相似文献   

18.
19.
Ribosomal protein S27a (RPS27a) could perform extra-ribosomal functions besides imparting a role in ribosome biogenesis and post-translational modifications of proteins. The high expression level of RPS27a was reported in solid tumors, and we found that the expression level of RPS27a was up-regulated in advanced-phase chronic myeloid leukemia (CML) and acute leukemia (AL) patients. In this study, we explored the function of RPS27a in leukemia cells by using CML cell line K562 cells and its imatinib resistant cell line K562/G01 cells. It was observed that the expression level of RPS27a was high in K562 cells and even higher in K562/G01 cells. Further analysis revealed that RPS27a knockdown by shRNA in both K562 and K562G01 cells inhibited the cell viability, induced cell cycle arrest at S and G2/M phases and increased cell apoptosis induced by imatinib. Combination of shRNA with imatinib treatment could lead to more cleaved PARP and cleaved caspase-3 expression in RPS27a knockdown cells. Further, it was found that phospho-ERK(p-ERK) and BCL-2 were down-regulated and P21 up-regulated in RPS27a knockdown cells. In conclusion, RPS27a promotes proliferation, regulates cell cycle progression and inhibits apoptosis of leukemia cells. It appears that drugs targeting RPS27a combining with tyrosine kinase inhibitor (TKI) might represent a novel therapy strategy in TKI resistant CML patients.  相似文献   

20.
Hypoxia-induced nucleophosmin protects cell death through inhibition of p53   总被引:13,自引:0,他引:13  
Nucleophosmin (NPM) is a multifunctional protein that is overexpressed in actively proliferating cells and cancer cells. Here we report that this proliferation-promoting protein is strongly induced in response to hypoxia in human normal and cancer cells. Up-regulation of NPM is hypoxia-inducible factor-1 (HIF-1)-dependent. The NPM promoter encodes a functional HIF-1-responsive element that can be activated by hypoxia or forced expression of HIF-1alpha. Suppression of NPM expression by small interfering RNA targeting NPM increases hypoxia-induced apoptosis, whereas overexpression of NPM protects against hypoxic cell death of wild-type but not p53-null cells. Moreover, NPM inhibits hypoxia-induced p53 phosphorylation at Ser-15 and interacts with p53 in hypoxic cells. Thus, this study not only demonstrates hypoxia regulation of a proliferation-promoting protein but also suggests that hypoxia-driven cancer progression may require increased expression of NPM to suppress p53 activation and maintain cell survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号