首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   122538篇
  免费   5611篇
  国内免费   8709篇
  2023年   1473篇
  2022年   2018篇
  2021年   2714篇
  2020年   2951篇
  2019年   4595篇
  2018年   3406篇
  2017年   2708篇
  2016年   3102篇
  2015年   4139篇
  2014年   6353篇
  2013年   9163篇
  2012年   5093篇
  2011年   7102篇
  2010年   5892篇
  2009年   5525篇
  2008年   5622篇
  2007年   6097篇
  2006年   5509篇
  2005年   5031篇
  2004年   4474篇
  2003年   3759篇
  2002年   3200篇
  2001年   2398篇
  2000年   2050篇
  1999年   2085篇
  1998年   1890篇
  1997年   1676篇
  1996年   1543篇
  1995年   1757篇
  1994年   1674篇
  1993年   1565篇
  1992年   1546篇
  1991年   1327篇
  1990年   1160篇
  1989年   1090篇
  1988年   1073篇
  1987年   1013篇
  1986年   734篇
  1985年   1257篇
  1984年   1716篇
  1983年   1209篇
  1982年   1619篇
  1981年   1184篇
  1980年   1163篇
  1979年   1045篇
  1978年   655篇
  1977年   566篇
  1976年   486篇
  1975年   349篇
  1973年   363篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
The discovery that the single p53 gene encodes several different p53 protein isoforms has initiated a flurry of research into the function and regulation of these novel p53 proteins. Full-length p53 protein level is primarily regulated by the E3-ligase Mdm2, which promotes p53 ubiquitination and degradation. Here, we report that all of the novel p53 isoforms are ubiquitinated and degraded to varying degrees in an Mdm2-dependent and -independent manner, and that high-risk human papillomavirus can degrade some but not all of the novel isoforms, demonstrating that full-length p53 and the p53 isoforms are differentially regulated. In addition, we provide the first evidence that Mdm2 promotes the NEDDylation of p53β. Altogether, our data indicates that Mdm2 can distinguish between the p53 isoforms and modify them differently.  相似文献   
2.
DNA glycosylases remove damaged or modified nucleobases by cleaving the N-glycosyl bond and the correct nucleotide is restored through subsequent base excision repair. In addition to excising threatening lesions, DNA glycosylases contribute to epigenetic regulation by mediating DNA demethylation and perform other important functions. However, the catalytic mechanism remains poorly defined for many glycosylases, including MBD4 (methyl-CpG binding domain IV), a member of the helix-hairpin-helix (HhH) superfamily. MBD4 excises thymine from G·T mispairs, suppressing mutations caused by deamination of 5-methylcytosine, and it removes uracil and modified uracils (e.g., 5-hydroxymethyluracil) mispaired with guanine. To investigate the mechanism of MBD4 we solved high-resolution structures of enzyme-DNA complexes at three stages of catalysis. Using a non-cleavable substrate analog, 2′-deoxy-pseudouridine, we determined the first structure of an enzyme-substrate complex for wild-type MBD4, which confirms interactions that mediate lesion recognition and suggests that a catalytic Asp, highly conserved in HhH enzymes, binds the putative nucleophilic water molecule and stabilizes the transition state. Observation that mutating the Asp (to Gly) reduces activity by 2700-fold indicates an important role in catalysis, but probably not one as the nucleophile in a double-displacement reaction, as previously suggested. Consistent with direct-displacement hydrolysis, a structure of the enzyme-product complex indicates a reaction leading to inversion of configuration. A structure with DNA containing 1-azadeoxyribose models a potential oxacarbenium-ion intermediate and suggests the Asp could facilitate migration of the electrophile towards the nucleophilic water. Finally, the structures provide detailed snapshots of the HhH motif, informing how these ubiquitous metal-binding elements mediate DNA binding.  相似文献   
3.
6-Phosphofructo-2-kinase (ATP: D-fructose-6-phosphate-2-phosphotransferase) and D-fructose-2,6-bisphosphatase activities have been found in extracts prepared from etiolated mung bean seedlings. The activity of 6-phosphofructo-2-kinase exhibits a sigmoidal shape in response to changes in concentrations of both substrates, D-fructose 6-phosphate and ATP (S0.5 values of 1.8 and 1.2 mM, respectively). Inorganic orthophosphate (Pi) has a strong stimulating effect on the 2-kinase activity (A0.5 at about 2 mM), moderately increasing the Vmax and modifying the response into hyperbolic curves with Km values of 0.4 and 0.2 mM for fructose 6-phosphate and ATP, respectively. 3-Phosphoglycerate (I0.5 about 0.15 mM) partially inhibited the kinase activity by counteracting the Pi activation. In contrast, the activity of D-fructose-2,6-bisphosphatase (Km 0.38 mM) is strongly inhibited by Pi (I0.5 0.8 mM) lowering its affinity to fructose-2,6-P2 (Km 1.4 mM). 3-Phosphoglycerate activites the enzyme (A0.5 at about 0.3 mM) without causing a significant change in its Km for fructose-2,6-P2. The activities of both of these enzymes in relationship to the metabolic role of D-fructose 2,6-bisphosphate in the germinating seed is discussed.  相似文献   
4.
Abstract. Nutrient conservation in vegetation affects rates of litter decomposition and soil nutrient availability. Although resorption has been traditionally considered one of the most important plant strategies to conserve nutrients in temperate forests, long leaf life‐span and low nutrient requirements have been postulated as better indicators. We aimed at identifying nutrient conservation strategies within characteristic functional groups of NW Patagonian forests on Andisols. We analysed C‐, N‐, P‐, K‐ and lignin‐concentrations in mature and senescent leaves of ten native woody species within the functional groups: broad‐leaved deciduous species, broad‐leaved evergreens and conifers. We also examined mycorrhizal associations in all species. Nutrient concentration in mature leaves and N‐ resorption were higher in broad‐leaved deciduous species than in the other two functional groups. Conifers had low mature leaf nutrient concentrations, low N‐resorption and high lignin/N ratios in senescent leaves. P‐ and K‐resorptions did not differ among functional groups. Broad‐leaved evergreens exhibited a species‐dependent response. Nitrogen in mature leaves was positively correlated with both N resorption and soil N‐fertility. Despite the high P‐retention capacity of Andisols, N appeared to be the more limiting nutrient, with most species being proficient in resorbing N but not P. The presence of endomycorrhizae in all conifers and the broad‐leaved evergreen Maytenus boaria, ectomycorrhizae in all Nothofagus species (four deciduous, one evergreen), and cluster roots in the broad‐leaved evergreen Lomatia hirsuta, would be possibly explaining why P is less limiting than N in these forests.  相似文献   
5.
The literature relating to chemical, biochemical and biological aspects of the steroidal glycoalkaloid, α-tomatine, is reviewed. The alkaloid, which can be used as a starting compound for the synthesis of steroidal hormones, is toxic to a wide range of living organisms. The significance of tomatine to plants which elaborate it is discussed and some possible uses of the compound are mentioned.  相似文献   
6.
7.
Binding of the cationic tetra(tributylammoniomethyl)-substituted hydroxoaluminum phthalocyanine (AlPcN4) to bilayer lipid membranes was studied by fluorescence correlation spectroscopy (FCS) and intramembrane field compensation (IFC) methods. With neutral phosphatidylcholine membranes, AlPcN4 appeared to bind more effectively than the negatively charged tetrasulfonated aluminum phthalocyanine (AlPcS4), which was attributed to the enhancement of the coordination interaction of aluminum with the phosphate moiety of phosphatidylcholine by the electric field created by positively charged groups of AlPcN4. The inhibitory effect of fluoride ions on the membrane binding of both AlPcN4 and AlPcS4 supported the essential role of aluminum-phosphate coordination in the interaction of these phthalocyanines with phospholipids. The presence of negative or positive charges on the surface of lipid membranes modulated the binding of AlPcN4 and AlPcS4 in accord with the character (attraction or repulsion) of the electrostatic interaction, thus showing the significant contribution of the latter to the phthalocyanine adsorption on lipid bilayers. The data on the photodynamic activity of AlPcN4 and AlPcS4 as measured by sensitized photoinactivation of gramicidin channels in bilayer lipid membranes correlated well with the binding data obtained by FCS and IFC techniques. The reduced photodynamic activity of AlPcN4 with neutral membranes violating this correlation was attributed to the concentration quenching of singlet excited states as proved by the data on the AlPcN4 fluorescence quenching.  相似文献   
8.
Although there are several reports on ultradian and circadian rhythms in newborns, we found only one report in which infradian periodicities are described for heart-rate measurements in the early stages of human development. Here, we report infradian rhythms in the monthly range in the sleep/wake cycle of four infants studied along 24 consecutive weeks. Our procedure was applied to sleep diary records from four healthy newborns. The data were arranged in binary time series representing sleep (?1) or wake (1) states. These time series were integrated in order to obtain the cumulative sleep/wake time. A measure of the sleep/wake ratio (SWR) was obtained by computing the average slope of the cumulative sleep/wake time. To extract periodicities we applied the Fourier periodogram to the temporal course of the SWR. We found a notorious difference in the SWR pattern among infants. In two infants the SWR showed a marked linear decay, spending more time asleep than awake, while in the two other infants oscillated near zero. We found robust oscillations in all children. In all cases the Fourier periodogram results present significant power in the infradian range. From these results, we suggest that sleep and wake durations are probably modulated by some internal stimuli.  相似文献   
9.
10.
《Cell reports》2020,30(1):112-123.e4
  1. Download : Download high-res image (131KB)
  2. Download : Download full-size image
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号