首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The discovery that the single p53 gene encodes several different p53 protein isoforms has initiated a flurry of research into the function and regulation of these novel p53 proteins. Full-length p53 protein level is primarily regulated by the E3-ligase Mdm2, which promotes p53 ubiquitination and degradation. Here, we report that all of the novel p53 isoforms are ubiquitinated and degraded to varying degrees in an Mdm2-dependent and -independent manner, and that high-risk human papillomavirus can degrade some but not all of the novel isoforms, demonstrating that full-length p53 and the p53 isoforms are differentially regulated. In addition, we provide the first evidence that Mdm2 promotes the NEDDylation of p53β. Altogether, our data indicates that Mdm2 can distinguish between the p53 isoforms and modify them differently.  相似文献   

2.
3.
Mdm2 is an E3 ubiquitin ligase that promotes its own ubiquitination and also ubiquitination of the p53 tumour suppressor. In a bacterial two-hybrid screen, using Mdm2 as bait, we identified an Mdm2-interacting peptide that bears sequence similarity to the deubiquitinating enzyme USP2a. We have established that full-length USP2a associates with Mdm2 in cells where it can deubiquitinate Mdm2 while demonstrating no deubiquitinating activity towards p53. Ectopic expression of USP2a causes accumulation of Mdm2 in a dose-dependent manner and consequently promotes Mdm2-mediated p53 degradation. This differs from the behaviour of HAUSP, which deubiquitinates p53 in addition to Mdm2 and thus protects p53 from Mdm2-mediated degradation. We further demonstrate that suppression of endogenous USP2a destabilises Mdm2 and causes accumulation of p53 protein and activation of p53. Our data identify the deubiquitinating enzyme USP2a as a novel regulator of the p53 pathway that acts through its ability to selectively target Mdm2.  相似文献   

4.
Regulation of p63 function by Mdm2 and MdmX.   总被引:7,自引:0,他引:7  
p63, a p53-related protein, has been shown to activate p53-responsive genes and induce apoptosis in certain cell types. In this study, we examined the effects of Mdm2 and MdmX proteins on p63 transactivation, apoptosis, and protein levels. The isoforms of p63 most structurally similar to p53, p63gamma (p51A) and p63alpha (p51B), were chosen for study. Our results confirm earlier reports demonstrating that although both p63 isoforms can transactivate p53-responsive promoters and induce apoptosis, p63gamma has a stronger transactivation potential and is a more potent inducer of apoptosis than is p63alpha. In addition, both Mdm2 and MdmX were able to inhibit the transactivation induced by p63gamma and p63alpha. However, only Mdm2 overexpression led to a detectable decrease in p63-induced apoptosis. Although Mdm2 binding to p53 triggers ubiquitin-mediated proteosome degradation, p63 protein levels were unaltered by association with either Mdm2 or MdmX. Finally, immunofluorescence experiments showed that both p63 isoforms were localized in the nucleus and could be exported when coexpressed with Mdm2 but not with MdmX. These findings suggest that both Mdm2 and MdmX can downregulate p63 transactivation potential; however, only Mdm2 is capable of inhibiting the apoptotic function of p63 by removing it from the nucleus.  相似文献   

5.
The tumour suppressor p53 induces apoptosis or cell-cycle arrest in response to genotoxic and other stresses. In unstressed cells, the anti-proliferative effects of p53 are restrained by mouse double minute 2 (Mdm2), a ubiquitin ligase (E3) that promotes p53 ubiquitination and degradation. Mdm2 also mediates its own degradation through auto-ubiquitination. It is unclear how the cis- and trans-E3 activities of Mdm2, which have opposing effects on cell fate, are differentially regulated. Here, we show that death domain-associated protein (Daxx) is required for Mdm2 stability. Downregulation of Daxx decreases Mdm2 levels, whereas overexpression of Daxx strongly stabilizes Mdm2. Daxx simultaneously binds to Mdm2 and the deubiquitinase Hausp, and it mediates the stabilizing effect of Hausp on Mdm2. In addition, Daxx enhances the intrinsic E3 activity of Mdm2 towards p53. On DNA damage, Daxx dissociates from Mdm2, which correlates with Mdm2 self-degradation. These findings reveal that Daxx modulates the function of Mdm2 at multiple levels and suggest that the disruption of the Mdm2-Daxx interaction may be important for p53 activation in response to DNA damage.  相似文献   

6.
The stability of the p53 protein is regulated by Mdm2. By acting as an E3 ubiquitin ligase, Mdm2 directs the ubiquitylation of p53 and its subsequent degradation by the 26S proteasome. In contrast, the Mdmx protein, although structurally similar to Mdm2, cannot ubiquitylate or degrade p53 in vivo. To ascertain which domains determine this functional difference between Mdm2 and Mdmx and consequently are essential for p53 ubiquitylation and degradation, we generated Mdm2-Mdmx chimeric constructs. Here we show that, in addition to a fully functional Mdm2 RING finger, an internal domain of Mdm2 (residues 202 to 302) is essential for p53 ubiquitylation. Strikingly, the function of this domain can be fulfilled in trans, indicating that the RING domain and this internal region perform distinct activities in the ubiquitylation of p53.  相似文献   

7.
Respiratory syncytial virus (RSV) is a clinically important pathogen. It preferentially infects airway epithelial cells causing bronchiolitis in infants, exacerbations in patients with obstructive lung disease, and life-threatening pneumonia in the immunosuppressed. The p53 protein is a tumor suppressor protein that promotes apoptosis and is tightly regulated for optimal cell growth and survival. A critical negative regulator of p53 is murine double minute 2 (Mdm2), an E3 ubiquitin ligase that targets p53 for proteasome degradation. Mdm2 is activated by phospho-Akt, and we previously showed that RSV activates Akt and delays apoptosis in primary human airway epithelial cells. In this study, we explore further the mechanism by which RSV regulates p53 to delay apoptosis but paradoxically enhance inflammation. We found that RSV activates Mdm2 1-6 h after infection resulting in a decrease in p53 6-24 h after infection. The p53 down-regulation correlates with increased airway epithelial cell longevity. Importantly, inhibition of the PI3K/Akt pathway blocks the activation of Mdm2 by RSV and preserves the p53 response. The effects of RSV infection are antagonized by Nutlin-3, a specific chemical inhibitor that prevents the Mdm2/p53 association. Nutlin-3 treatment increases endogenous p53 expression in RSV infected cells, causing earlier cell death. This same increase in p53 enhances viral replication and limits the inflammatory response as measured by IL-6 protein. These findings reveal that RSV decreases p53 by enhancing Akt/Mdm2-mediated p53 degradation, thereby delaying apoptosis and prolonging survival of airway epithelial cells.  相似文献   

8.
9.
As a genome guardian, p53 maintains genome stability by arresting cells for damage repair or inducing cell apoptosis to eliminate the damaged cells in stress response. Several nucleolar proteins stabilize p53 by interfering Mdm2–p53 interaction upon cellular stress, while other mechanisms by which nucleolar proteins activate p53 remain to be determined. Here, we identify NAT10 as a novel regulator for p53 activation. NAT10 acetylates p53 at K120 and stabilizes p53 by counteracting Mdm2 action. In addition, NAT10 promotes Mdm2 degradation with its intrinsic E3 ligase activity. After DNA damage, NAT10 translocates to nucleoplasm and activates p53‐mediated cell cycle control and apoptosis. Finally, NAT10 inhibits cell proliferation and expression of NAT10 decreases in human colorectal carcinomas. Thus, our data demonstrate that NAT10 plays a critical role in p53 activation via acetylating p53 and counteracting Mdm2 action, providing a novel pathway by which nucleolar protein activates p53 as a cellular stress sensor.  相似文献   

10.
Pirh2, a p53-induced ubiquitin-protein ligase,promotes p53 degradation   总被引:32,自引:0,他引:32  
Leng RP  Lin Y  Ma W  Wu H  Lemmers B  Chung S  Parant JM  Lozano G  Hakem R  Benchimol S 《Cell》2003,112(6):779-791
The p53 tumor suppressor exerts anti-proliferative effects in response to various types of stress including DNA damage and abnormal proliferative signals. Tight regulation of p53 is essential for maintaining normal cell growth and this occurs primarily through posttranslational modifications of p53. Here, we describe Pirh2, a gene regulated by p53 that encodes a RING-H2 domain-containing protein with intrinsic ubiquitin-protein ligase activity. Pirh2 physically interacts with p53 and promotes ubiquitination of p53 independently of Mdm2. Expression of Pirh2 decreases the level of p53 protein and abrogation of endogenous Pirh2 expression increases the level of p53. Furthermore, Pirh2 represses p53 functions including p53-dependent transactivation and growth inhibition. We propose that Pirh2 is involved in the negative regulation of p53 function through physical interaction and ubiquitin-mediated proteolysis. Hence, Pirh2, like Mdm2, participates in an autoregulatory feedback loop that controls p53 function.  相似文献   

11.
The p53 tumor suppressor protein is normally restrained by the Mdm2 oncoprotein, which promotes p53 ubiquitination. In a recent issue of Science, report that p53 may face two alternative fates, depending on Mdm2 levels: high Mdm2 drives p53 polyubiquitination and degradation within the cell nucleus, whereas low Mdm2 promotes p53 monoubiquitination and nuclear exclusion.  相似文献   

12.
The product of the Mdm2 oncogene directly interacts with p53 and promotes its ubiquitination and proteasomal degradation. Initial biological studies identified nuclear export sequences (NES), similar to that of the Rev protein from the human immunodeficiency virus, both in Mdm2 and p53. The reported phenotypes resulting from mutation of these NESs, together with results obtained using the nuclear export inhibitor leptomycin B (LMB), have led to a model according to which nuclear export of p53 (via either the NES of Mdm2 or its own NES) is required for efficient p53 degradation. In this study we demonstrate that Mdm2 can promote degradation of p53 in the nucleus or in the cytoplasm, provided both proteins are colocalized. We also investigated if nuclear export is an obligate step on the p53 degradation pathway. We find that (1) when proteasome activity is inhibited, ubiquitinated p53 accumulates in the nucleus and not in the cytoplasm; (2) Mdm2 with a mutated NES can efficiently mediate degradation of wild type p53 or p53 with a mutated NES; (3) the nuclear export inhibitor LMB can increase the steady-state level of p53 by inhibiting Mdm2-mediated ubiquitination of p53; and (4) LMB fails to inhibit Mdm2-mediated degradation of the p53NES mutant, demonstrating that Mdm2-dependent proteolysis of p53 is feasible in the nucleus in the absence of any nuclear export. Therefore, given cocompartmentalization, Mdm2 can promote ubiquitination and proteasomal degradation of p53 with no absolute requirement for nuclear to cytoplasmic transport.  相似文献   

13.
Mdm2, a RING-finger type ubiquitin ligase, is overexpressed in a variety of human cancers. It promotes ubiquitination of the tumor suppressor p53 and can function as an oncogene by largely downregulating p53. Recently, we reported that Mdm2 degrades retinoblastoma tumor suppressor protein (pRB) via the ubiquitin-proteasome system. In the present study, we assessed the effects of MdmX, a structural homolog of Mdm2, on the Mdm2-mediated ubiquitination of pRB. MdmX is known to negatively regulate p53 function by enhancing the Mdm2-mediated ubiquitination and degradation of p53. Interestingly, MdmX inhibited the Mdm2-mediated pRB ubiquitination. Furthermore, an MdmX siRNA decreased the endogenous pRB level, while MdmX overexpression stimulated pRB functions in cultured cells. Therefore, MdmX may have different roles in the regulation of Mdm2 activity for ubiquitination of pRB and p53.  相似文献   

14.
The tumor suppressor p53 plays a prominent role in the protection against cancer. The activity of p53 is mainly controlled by the ubiquitin E3 ligase Mdm2, which targets p53 for proteasomal degradation. However, the regulation of Mdm2 remains not well understood. Here, we show that MARCH7, a RING domain‐containing ubiquitin E3 ligase, physically interacts with Mdm2 and is essential for maintaining the stability of Mdm2. MARCH7 catalyzes Lys63‐linked polyubiquitination of Mdm2, which impedes Mdm2 autoubiquitination and degradation, thereby leading to the stabilization of Mdm2. MARCH7 also promotes Mdm2‐dependent polyubiquitination and degradation of p53. Furthermore, MARCH7 is able to regulate cell proliferation, DNA damage‐induced apoptosis, and tumorigenesis via a p53‐dependent mechanism. These findings uncover a novel mechanism for the regulation of Mdm2 and reveal MARCH7 as an important regulator of the Mdm2–p53 pathway.  相似文献   

15.
We have demonstrated previously that the oncoprotein Mdm2 has a ubiquitin ligase activity for the tumor suppressor p53 protein. In the present study, we characterize this ubiquitin ligase activity of Mdm2. We first demonstrate the ubiquitination of several p53 point mutants and deletion mutants by Mdm2. The point mutants, which cannot bind to Mdm2, are not ubiquitinated by Mdm2. The ubiquitination of the C-terminal deletion mutants, which contain so-called Mdm2-binding sites, is markedly decreased, compared with that of wild-type p53. The binding of Mdm2 to p53 is essential for ubiquitination, but p53's tertiary structure and/or C-terminal region may also be important for this reaction. DNA-dependent protein kinase is known to phosphorylate p53 on Mdm2-binding sites, where DNA damage induces phosphorylation, and p53 phosphorylated by this kinase is not a good substrate for Mdm2. This suggests that DNA damage-induced phosphorylation stabilizes p53 by inhibiting its ubiquitination by Mdm2. We further investigated whether the tumor suppressor p19(ARF) affects the ubiquitin ligase activity of Mdm2 for p53. The activity of p19(ARF)-bound Mdm2 was found to be lower than that of free Mdm2, suggesting that p19(ARF) promotes the stabilization of p53 by inactivating Mdm2.  相似文献   

16.
p53 mediates DNA damage‐induced cell‐cycle arrest, apoptosis, or senescence, and it is controlled by Mdm2, which mainly ubiquitinates p53 in the nucleus and promotes p53 nuclear export and degradation. By searching for the kinases responsible for Mdm2 S163 phosphorylation under genotoxic stress, we identified S6K1 as a multifaceted regulator of Mdm2. DNA damage activates mTOR‐S6K1 through p38α MAPK. The activated S6K1 forms a tighter complex with Mdm2, inhibits Mdm2‐mediated p53 ubiquitination, and promotes p53 induction, in addition to phosphorylating Mdm2 on S163. Deactivation of mTOR‐S6K1 signalling leads to Mdm2 nuclear translocation, which is facilitated by S163 phosphorylation, a reduction in p53 induction, and an alteration in p53‐dependent cell death. These findings thus establish mTOR‐S6K1 as a novel regulator of p53 in DNA damage response and likely in tumorigenesis. S6K1–Mdm2 interaction presents a route for cells to incorporate the metabolic/energy cues into DNA damage response and links the aging‐controlling Mdm2–p53 and mTOR‐S6K pathways.  相似文献   

17.
18.
The Zinc Finger (ZNF) 280B protein was identified as an unexpected target of an shRNA designed for sGCα1. Further analysis showed that these two proteins are connected in another way, with 280B up-regulation of sGCα1 expression. Knock-down and over-expression experiments showed that 280B serves pro-growth and pro-survival functions in prostate cancer. Surprisingly however, these pro-cancer functions of 280B are not mediated by sGCα1, which itself has similar functions in prostate cancer, but by down-regulated p53. The p53 protein is a second target of 280B in prostate cancer, but unlike sGCα1, p53 is down-regulated by 280B. 280B induces p53 nuclear export, leading to subsequent proteasomal degradation. The protein responsible for p53 regulation by 280B is Mdm2, the E3 ubiquitin ligase that promotes p53 degradation by inducing its nuclear export. We show here that 280B up-regulates expression of Mdm2 in prostate cancer cells, and this regulation is via the Mdm2 promoter. To demonstrate an in vivo relevance to this interaction, expression studies show that 280B protein levels are up-regulated in prostate cancer and these levels correspond to reduced levels of p53. Thus, by enhancing the expression of Mdm2, the uncharacterized 280B protein provides a novel mechanism of p53 suppression in prostate cancer.  相似文献   

19.
P14ARF promotes accumulation of SUMO-1 conjugated (H)Mdm2   总被引:7,自引:0,他引:7  
p14ARF tumour suppressor stabilises and activates p53 by directly interacting with (H)Mdm2 [(human) murine double minute 2 homologue] and inhibiting its E3 ubiquitin ligase activity. Here we demonstrate that p14ARF promotes accumulation of (H)Mdm2 conjugated to the small ubiquitin-like protein SUMO-1. Mutational analysis demonstrated that the N-terminus of Mdm2 is a target for p14ARF-mediated SUMO conjugation. SUMO modification requires residues 2-14 in p14ARF that interact with (H)Mdm2 and residues 82-101 in exon 2 involved in nucleolar localisation of p14ARF. These data suggest a novel role for p14ARF as a regulator of activity of (H)Mdm2, which could be related to its tumour suppressing activities.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号