共查询到20条相似文献,搜索用时 78 毫秒
1.
Phospholipase C-gamma 2 is a critical signaling mediator for murine NK cell activating receptors 总被引:2,自引:0,他引:2
Tassi I Presti R Kim S Yokoyama WM Gilfillan S Colonna M 《Journal of immunology (Baltimore, Md. : 1950)》2005,175(2):749-754
Phospholipase C-gamma (PLCgamma) is a key regulator of intracellular Ca(2+) mobilization. Two isoforms of PLCgamma have been identified, PLCgamma1 and PLCgamma2. Previously, in vitro studies indicated that activating NK cell receptors signal through both isoforms. However, PLCgamma2 deficiency alone was sufficient to induce a substantial impairment of NK cell-mediated cytotoxicity in vitro. Why PLCgamma2 is more important than PLCgamma1 for NK cell activation and whether PLCgamma2 is also critical for NK cell development, secretion of IFN-gamma, and clearance of viral infections in vivo is not known. In this study, we report that PLCgamma2 is the predominant isoform expressed in murine NK cells. PLCgamma2 deficiency did not affect NK cell numbers in bone marrow and spleen, but acquisition of Ly49 receptors by NK cells was partially impaired. PLCgamma2-deficient NK cells exhibited a dramatic impairment of cytolytic function and IFN-gamma production upon ligation of activating receptors, whereas they did secrete IFN-gamma in response to cytokines. Consequently, mice lacking PLCgamma2 controlled murine CMV infection substantially less effectively than did wild-type animals, and this defect was most evident in the spleen, where viral clearance mostly depends on NK cell lytic function. These results demonstrate that PLCgamma2 is crucial for development of the NK cell receptor repertoire and signaling of activating NK cell receptors, mediating optimal NK cell function in vivo. 相似文献
2.
Two glycogen synthase isoforms in Saccharomyces cerevisiae are coded by distinct genes that are differentially controlled 总被引:9,自引:0,他引:9
I Farkas T A Hardy M G Goebl P J Roach 《The Journal of biological chemistry》1991,266(24):15602-15607
In previous work, we identified a Saccharomyces cerevisiae glycogen synthase gene, GSY1, which codes for an 85-kDa polypeptide present in purified yeast glycogen synthase (Farkas, I., Hardy, T.A., DePaoli-Roach, A.A., and Roach, P.J. (1990) J. Biol. Chem. 265, 20879-20886). We have now cloned another gene, GSY2, which encodes a second S. cerevisiae glycogen synthase. The GSY2 sequence predicts a protein of 704 residues, molecular weight 79,963, with 80% identity to the protein encoded by GSY1. Amino acid sequences obtained from a second polypeptide of 77 kDa present in yeast glycogen synthase preparations matched those predicted by GSY2. GSY1 resides on chromosome VI, and GSY2 is located on chromosome XII. Disruption of the GSY1 gene produced a strain retaining about 85% of wild type glycogen synthase activity at stationary phase, while disruption of the GSY2 gene yielded a strain with only about 10% of wild type enzyme activity. The level of glycogen synthase activity in yeast cells disrupted for GSY1 increased in stationary phase, whereas the activity remained at a constant low level in cells disrupted for GSY2. Disruption of both genes resulted in a viable haploid that totally lacked glycogen synthase activity and was defective in glycogen deposition. In conclusion, yeast expresses two forms of glycogen synthase with activity levels that behave differently in the growth cycle. The GSY2 gene product appears to be the predominant glycogen synthase with activity linked to nutrient depletion. 相似文献
3.
Bautze V Bär R Fissler B Trapp M Schmidt D Beifuss U Bufe B Zufall F Breer H Strotmann J 《Chemical senses》2012,37(5):479-493
The capacity of the mammalian olfactory system to detect an enormous collection of different chemical compounds is based on a large repertoire of odorant receptors (ORs). A small group of these ORs, the OR37 family, is unique due to a variety of special features. Members of this subfamily are exclusively found in mammals, they share a high degree of sequence homology and are highly conserved during evolution. It is still elusive which odorants may activate these atypical receptors. We have reasoned that compounds from skin, hairs, or skin glands might be potential candidates. We have exposed mice to such compounds and monitored activation of glomeruli through the expression of the activity marker c-fos in juxtaglomerular cells surrounding ventrally positioned glomeruli in the olfactory bulb (OB). Employing this methodology it was found that stimulation with long-chain alkanes elicits activation in the ventral part of the OB, however, none of the OR37 glomeruli. Analyses of long-chain hydrocarbon compounds with different functional groups revealed that long-chain aliphatic aldehydes elicited an activation of defined OR37 glomeruli, each of them responding preferentially to an aldehyde with different chain lengths. These results indicate that OR37 receptors may be tuned to distinct fatty aldehydes with a significant degree of ligand specificity. 相似文献
4.
5.
Suzanne Camus Sergio Menéndez Kenneth Fernandes Nelly Kua Geng Liu Dimitris P. Xirodimas David P. Lane Jean-Christophe Bourdon 《Cell cycle (Georgetown, Tex.)》2012,11(8):1646-1655
The discovery that the single p53 gene encodes several different p53 protein isoforms has initiated a flurry of research into the function and regulation of these novel p53 proteins. Full-length p53 protein level is primarily regulated by the E3-ligase Mdm2, which promotes p53 ubiquitination and degradation. Here, we report that all of the novel p53 isoforms are ubiquitinated and degraded to varying degrees in an Mdm2-dependent and -independent manner, and that high-risk human papillomavirus can degrade some but not all of the novel isoforms, demonstrating that full-length p53 and the p53 isoforms are differentially regulated. In addition, we provide the first evidence that Mdm2 promotes the NEDDylation of p53β. Altogether, our data indicates that Mdm2 can distinguish between the p53 isoforms and modify them differently. 相似文献
6.
《Cell cycle (Georgetown, Tex.)》2013,12(8):1646-1655
The discovery that the single p53 gene encodes several different p53 protein isoforms has initiated a flurry of research into the function and regulation of these novel p53 proteins. Full-length p53 protein level is primarily regulated by the E3-ligase Mdm2, which promotes p53 ubiquitination and degradation. Here, we report that all of the novel p53 isoforms are ubiquitinated and degraded to varying degrees in an Mdm2-dependent and -independent manner, and that high-risk human papillomavirus can degrade some but not all of the novel isoforms, demonstrating that full-length p53 and the p53 isoforms are differentially regulated. In addition, we provide the first evidence that Mdm2 promotes the NEDDylation of p53β. Altogether, our data indicates that Mdm2 can distinguish between the p53 isoforms and modify them differently. 相似文献
7.
Cyclin C is a highly conserved protein that is involved in divergent cellular processes. The exact roles of its isoforms are presently not very well defined and it is possible that there is a functional divergence amongst them. We therefore sought to assess the expression pattern of cyclin C1 and C2 isoforms in various human tissues and in cell cycle by using real-time PCR experiments. Our findings strongly suggest that the C2 isoform may play a presently unexplored and important role in mammalian testis and probably this isoform is the one that is mainly implicated in cell cycle regulation. 相似文献
8.
Glycosphingolipid-enriched domains are hot spots for cell signaling within plasma membranes and are characterized by the enrichment of glycosphingolipids. A role for glucosylceramide-based glycosphingolipids in phospholipase C-mediated inositol 1,4,5-trisphosphate formation has been previously documented. These earlier studies utilized a first generation glucosylceramide synthase inhibitor to deplete cells of their glycosphingolipids. Recently, more active and specific glucosylceramide synthase inhibitors, including d-threo-ethylendioxyphenyl-2-palmitoylamino-3-pyrrolidinopropanol (d-t-EtDO-P4), have been designed. d-t-EtDO-P4 has the advantage of blocking glucosylceramide synthase at low nanomolar concentrations but does not cause secondary elevations in cell ceramide levels. In the present study, d-t-EtDO-P4 depleted cellular glucosylceramide and lactosylceramide in cultured ECV304 cells at nanomolar concentrations without obvious cellular toxicity. The expression of several signaling proteins was evaluated in glycosphingolipid-depleted ECV304 cells to study the role of glycosphingolipids in phospholipase C-mediated signaling. No difference was observed in the cellular expression of phospholipase C-gamma between controls and glycolipid-depleted cells. Western blot analysis, however, revealed that depletion of endogenous glycosphingolipids in cultured ECV304 cells with d-t-EtDO-P4 induced tyrosine phosphorylation of phospholipase C-gamma in a concentration-dependent manner with maximum induction at 100 nm. The phosphorylation of phospholipase C-gamma induced by d-t-EtDO-P4 was abolished by exogenously added glucosylceramide, consistent with a specific glycosphingolipid-phospholipase C-gamma interaction. The phospholipase C-gamma phosphorylation was maximally enhanced by bradykinin when cells were exposed to 100 nm d-t-EtDO-P4. The measurement of cellular activity of phospholipase C-gamma, by myo-inositol 1,4,5-trisphosphate radioreceptor assay, demonstrated that depletion of glucosylceramide-based glycosphingolipids in cultured ECV304 cells with d-t-EtDO-P4 resulted in significantly increased formation of inositol 1,4,5-trisphosphate above base line, and an increased sensitivity of phospholipase C-gamma to bradykinin stimulation. Thus, the activation of phospholipase C-gamma is negatively regulated by membrane glycosphingolipids in ECV304 cells. 相似文献
9.
Functionally distinct isoforms of dynactin are expressed in human neurons. 总被引:4,自引:0,他引:4 下载免费PDF全文
P150Glued is the largest subunit of dynactin, which binds to cytoplasmic dynein and activates vesicle transport along microtubules. We have isolated human cDNAs encoding p150Glued as well as a 135-kDa isoform; these isoforms are expressed in human brain by alternative mRNA splicing of the human DCTN1 gene. The p135 isoform lacks the consensus microtubule-binding motif shared by members of the p150Glued/Glued/CLIP-170/BIK1 family of microtubule-associated proteins and, therefore, is predicted not to bind directly to microtubules. We used transient transfection assays and in vitro microtubule-binding assays to demonstrate that the p150 isoform binds to microtubules, but the p135 isoform does not. However, both isoforms bind to cytoplasmic dynein, and both partition similarly into cytosolic and membrane cellular fractions. Sequential immunoprecipitations with an isoform-specific antibody for p150 followed by a pan-isoform antibody revealed that, in brain, these polypeptides assemble to form distinct complexes, each of which sediments at approximately 20 S. On the basis of these observations, we hypothesize that there is a conserved neuronal function for a distinct form of the dynactin complex that cannot bind directly to cellular microtubules. 相似文献
10.
The mechanism by which cAMP modulates the activity of phosphoinositide-specific phospholipase C (PLC) was studied. Elevation of cAMP inhibited both basal and norepinephrine-stimulated phosphoinositide breakdown in C6Bu1 cells which contain at least three PLC isozymes, PLC-beta, PLC-gamma, and PLC-delta. Treatment of C6Bu1 cells with cAMP-elevating agents (cholera toxin, isobutylmethylxanthine, forskolin, and 8-bromo-cAMP) increased serine phosphate in PLC-gamma, but the phosphate contents in PLC-beta and PLC-delta were not changed. In addition, cAMP-dependent protein kinase selectively phosphorylated purified PLC-gamma among the three isozymes and added a single phosphate at serine. The serine phosphorylation, nevertheless, did not affect the activity of PLC-gamma in vitro. We propose, therefore, that the phosphorylation of PLC-gamma by cAMP-dependent protein kinase alters its interaction with putative modulatory proteins and leads to its inhibition. 相似文献
11.
Smooth muscle relaxation in response to NO signaling is due, in part, to a Ca(2+)-independent activation of myosin light chain (MLC) phosphatase by protein kinase G Iα (PKGIα). MLC phosphatase is a trimeric complex of a 20-kDa subunit, a 38-kDa catalytic subunit, and a 110-133-kDa myosin-targeting subunit (MYPT1). Alternative mRNA splicing produces four MYPT1 isoforms, differing by the presence or absence of a central insert and leucine zipper (LZ). The LZ domain of MYPT1 has been shown to be important for PKGIα-mediated activation of MLC phosphatase activity, and changes in LZ+ MYPT1 isoform expression result in changes in the sensitivity of smooth muscle to NO-mediated relaxation. Furthermore, PKGIα has been demonstrated to phosphorylate Ser-694 of MYPT1, but phosphorylation at this site does not always accompany cGMP-mediated smooth muscle relaxation. This study was designed to determine whether MYPT1 isoforms are differentially phosphorylated by PKGIα. The results demonstrate that purified LZ+ MYPT1 fragments are rapidly phosphorylated by PKGIα at Ser-667 and Ser-694, whereas fragments lacking the LZ domain are poor PKGIα substrates. Mutation of Ser-667 and Ser-694 to Ala and/or Asp showed that Ser-667 phosphorylation is more rapid than Ser-694 phosphorylation, suggesting that Ser-667 may play an important role in the activation of MLC phosphatase. These results demonstrate that MYPT1 isoform expression is important for determining the heterogeneous response of vascular beds to NO and NO-based vasodilators, thereby playing a central role in the regulation of vascular tone in health and disease. 相似文献
12.
Piechulek T Rehlen T Walliser C Vatter P Moepps B Gierschik P 《The Journal of biological chemistry》2005,280(47):38923-38931
The regulation of the two isoforms of phospholipase C-gamma, PLCgamma(1) and PLCgamma(2), by cell surface receptors involves protein tyrosine phosphorylation as well as interaction with adapter proteins and phosphatidylinositol 3,4,5-trisphosphate (PtdInsP(3)) generated by inositol phospholipid 3-kinases (PI3Ks). All three processes may lead to recruitment of the PLCgamma isozymes to the plasma membrane and/or stimulation of their catalytic activity. Recent evidence suggests that PLCgamma may also be regulated by Rho GTPases. In this study, PLCgamma(1) and PLCgamma(2) were reconstituted in intact cells and in a cell-free system with Rho GTPases to examine their influence on PLCgamma activity. PLCgamma(2), but not PLCgamma(1), was markedly activated in intact cells by constitutively active Rac1(G12V), Rac2(G12V), and Rac3(G12V) but not by Cdc42(G12V) and RhoA(G14V). The mechanism of PLCgamma(2) activation was apparently independent of phosphorylation of tyrosine residues known to be modified by PLCgamma(2)-activating protein-tyrosine kinases. Activation of PLCgamma(2) by Rac2(G12V) in intact cells coincided with a translocation of PLCgamma(2) from the soluble to the particulate fraction. PLCgamma isozyme-specific activation of PLCgamma(2) by Rac GTPases (Rac1 approximately Rac2 > Rac3), but not by Cdc42 or RhoA, was also observed in a cell-free system. Herein, activation of wild-type Rac GTPases with guanosine 5'-(3-O-thio)triphosphate caused a marked stimulation of PLCgamma(2) but had no effect on the activity of PLCgamma(1). PLCgamma(1) and PLCgamma(2) have previously been shown to be indiscriminately activated by PtdInsP(3) in vitro. Thus, the results suggest a novel mechanism of PLCgamma(2) activation by Rac GTPases involving neither protein tyrosine phosphorylation nor PI3K-mediated generation of PtdInsP(3). 相似文献
13.
Graddy LG Kowalski AA Simmen FA Davis SL Baumgartner WW Simmen RC 《The Journal of steroid biochemistry and molecular biology》2000,73(1-2):49-57
Cytochrome P450 aromatase, a product of the CYP 19 gene and the terminal enzyme in the estrogen biosynthetic pathway, is synthesized by the ovary, endometrium, placenta, and peri-implantation embryos in the pig and other mammals, albeit to varying levels, implying its functional role(s) in pregnancy events. The aromatase produced by the pig tissues exists as three distinct isoforms (type I - ovary, type II - placenta, and type III - embryo), with presumed differences in substrate specificities, expression levels, activity, and mode of regulation. In order to delineate the molecular mechanisms whereby estrogen synthesis is regulated in these diverse tissues, the present study examined if these aromatase isoforms represent products of multiple genes or of a single gene via complex splicing mechanisms. Porcine genomic DNA from a single animal was used as a template in the polymerase chain reaction (PCR) to amplify isoform-specific sequences corresponding to exons 4 and 7, respectively. Nucleotide sequence analysis of the generated fragments revealed the presence of only clones corresponding to the three known aromatase types. Screening a porcine Bacterial Artificial Chromosome (BAC) library for aromatase gene by PCR yielded a single clone approximately 80 kb in length. Southern blot analysis, using probes specific for exons 1A-1B, 2-3, 4-9, and 10 sequences indicated that the BAC genomic clone contains the entirety of the coding exons as well as the proximal promoter region. Sequence analysis of the fragment generated with exon 4 primers determined that this BAC clone contains only the type II gene. The presence and relative orientation of the untranslated 5'- exons 1A and 1B, previously demonstrated for the type III isoform were evaluated in the BAC clone and genomic DNA by PCR. The 265 bp fragment generated from both PCR reactions was confirmed by sequence analysis to contain exons 1A and 1B that are located contiguous to each other and separated by only three bp. A diagnostic procedure for typing aromatase isoforms was developed, based on the presence of specific restriction sites within isoform-specific exons. The use of this protocol confirmed the existence of only three aromatase isoforms in the porcine genome and indicated changes in aromatase types expressed by the uterine endometrium as a function of pregnancy stage. The presence of distinct genes encoding each of the aromatase isoform predicts important differences in the mechanisms underlying the molecular evolution and regulation of porcine aromatase, unique from those of other mammals, and suggests a critical role for P450 aromatase steroidal products in uterine functions related to pregnancy events. 相似文献
14.
15.
Cross-linking the antigen receptor on B cells results in a rapid increase in protein tyrosine kinase activity as detected by increased phosphorylation on tyrosine residues of multiple proteins. Although the identity of most of this substrates remains unknown, some have been proposed. One possible substrate of the antigen receptor-associated kinase is phospholipase C (PLC). Since multiple isoforms of PLC have been identified, we have studied which isoforms are targets of the antigen receptor. PLC-gamma 1 and PLC-gamma 2 but not PLC-beta 1 or PLC-delta 1 were detected in human B cells. Immunoprecipitation with antibodies against PLC-gamma 1 or PLC-gamma 2 and subsequent Western blotting with anti-phosphotyrosine antibodies revealed that both PLC-gamma 1 and PLC-gamma 2 are tyrosine phosphorylated in stimulated but not in resting B cells. This was confirmed by experiments whereby B cell lysates were immunoprecipitated with anti-phosphotyrosine antibody and subsequently blotted with antibodies against PLC-gamma 1 or PLC-gamma 2. Further, the specific protein tyrosine kinase inhibitors, tyrphostins, which block phospholipase-C activation and proliferation of B cells also inhibited tyrosine phosphorylation on both PLC-gamma 1 and PLC-gamma 2. We conclude that both isoforms PLC-gamma 1 and PLC-gamma 2 are targets of the antigen receptor-associated protein tyrosine kinase. 相似文献
16.
Prolactin (PRL) regulates a variety of physiological processes, including mammary gland growth and differentiation, modulation of behavior, and immune function. A long PRL receptor (lPRLR) and short (sPRLR) isoform were identified in ruminants and rodents, which differ in their distal cytoplasmic domains and possess markedly distinct signaling capacities. Here we compared endocytosis of the bovine isoforms and found that the lPRLR internalized faster than the sPRLR, which would contribute to short-term down-regulation of lPRLR signaling at targets expressing both isoforms. Multiple motifs were required to mediate internalization of the lPRLR, including a phenylalanine (F290) plus a nearby dileucine, and three dileucines proximal to amino acid 272. This is different from the closely related GH receptor that requires only the phenyl-alanine-containing motif for endocytosis. Truncated lPRLR (cT272), which is the same length as the sPRLR and contained the proximal three dileucines, internalized at the same rate as the full-length lPRLR. Finally, the two dileucines shared by the sPRLR were able to mediate similar endocytic pathways as the lPRLR, as revealed by overexpression of mutant dynamin and clathrin hub, despite the slower rate. These studies define the basis of cellular trafficking of PRLR isoforms and increase our understanding of control of target cell responsiveness by PRL. 相似文献
17.
18.
19.
20.
Chang JS Seok H Kwon TK Min DS Ahn BH Lee YH Suh JW Kim JW Iwashita S Omori A Ichinose S Numata O Seo JK Oh YS Suh PG 《The Journal of biological chemistry》2002,277(22):19697-19702
The pleckstrin homology (PH) domain is a small motif for membrane targeting in the signaling molecules. Phospholipase C (PLC)-gamma1 has two putative PH domains, an NH(2)-terminal and a split PH domain. Here we report studies on the interaction of the PH domain of PLC-gamma1 with translational elongation factor (EF)-1alpha, which has been shown to be a phosphatidylinositol 4-kinase activator. By pull-down of cell extract with the glutathione S-transferase (GST) fusion proteins with various domains of PLC-gamma1 followed by peptide sequence analysis, we identified EF-1alpha as a binding partner of a split PH domain of PLC-gamma1. Analysis by site-directed mutagenesis of the PH domain revealed that the beta2-sheet of a split PH domain is critical for the interaction with EF-1alpha. Moreover, Dot-blot assay shows that a split PH domain specifically binds to phosphoinositides including phosphatidylinositol 4-phosphate and phosphatidylinositol 4, 5-bisphosphate (PIP(2)). So the PH domain of PLC-gamma1 binds to both EF-1alpha and PIP(2). The binding affinity of EF-1alpha to the GST.PH domain fusion protein increased in the presence of PIP(2), although PIP(2) does not bind to EF-1alpha directly. This suggests that EF-1alpha may control the binding affinity between the PH domain and PIP(2). PLC-gamma1 is substantially activated in the presence of EF-1alpha with a bell-shaped curve in relation to the molar ratio between them, whereas a double point mutant PLC-gamma1 (Y509A/F510A) that lost its binding affinity to EF-1alpha shows basal level activity. Taken together, our data show that EF-1alpha plays a direct role in phosphoinositide metabolism of cellular signaling by regulating PLC-gamma1 activity via a split PH domain. 相似文献