首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
  国内免费   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2010年   3篇
  2004年   1篇
  1993年   1篇
排序方式: 共有15条查询结果,搜索用时 93 毫秒
1.
Half-smooth tongue sole (Cynoglossus semilaevis) is a rare marine flatfish whose mature ovary and testis greatly differ in volume and weight. The length and weight of mature females are over twice greater than those of mature males. To obtain sufficient information on gonad differentiation and the relationship between gonad development and growth in the fish, we compared gene expression between the ovary and testis using suppression subtractive hybridization (SSH). Testis cDNAs are subtracted from...  相似文献   
2.

Background and Aims

Evidence shows that plants modify their microbial environment leading to the “crop rotation effect”, but little is known about the changes in rhizobacterial community structure and functionality associated with beneficial rotation effects.

Methods

Polymerase chain reaction (PCR) and 454 GS FLX amplicon pyrosequencing were used to describe the composition of the rhizobacterial community evolving under the influence of pea, a growth promoting rotation crop, and the influence of three genotypes of chickpea, a plant known as an inferior rotation crop. The growth promoting properties of these rhizobacterial communities were tested on wheat in greenhouse assays.

Results

The rhizobacterial communities selected by pea and the chickpea CDC Luna in 2008, a wet year, promoted durum wheat growth, but those selected by CDC Vanguard or CDC Frontier had no growth-promoting effect. In 2009, a dry year, the influence of plants was mitigated, indicated that moisture availability is a major driver of soil bacterial community dynamics.

Conclusion

The effect of pulse crops on soil biological quality varies with the crop species and genotypes, and certain chickpea genotypes may induce positive rotation effects on wheat. The strength of a rotation effect on soil biological quality is modulated by the abundance of precipitation.  相似文献   
3.
Increasing evidence supports the existence of variations in the association of plant roots with symbiotic fungi that can improve plant growth and inhibit pathogens. However, it is unclear whether intraspecific variations in the symbiosis exist among plant cultivars and if they can be used to improve crop productivity. In this study, we determined genotype-specific variations in the association of chickpea roots with soil fungal communities and evaluated the effect of root mycota on crop productivity. A 2-year field experiment was conducted in southwestern Saskatchewan, the central zone of the chickpea growing region of the Canadian prairie. The effects of 13 cultivars of chickpea, comprising a wide range of phenotypes and genotypes, were tested on the structure of root-associated fungal communities based on internal transcribed spacer (ITS) and 18S rRNA gene markers using 454 amplicon pyrosequencing. Chickpea cultivar significantly influenced the structure of the root fungal community. The magnitude of the effect varied with the genotypes evaluated, and effects were consistent across years. For example, the roots of CDC Corrine, CDC Cory, and CDC Anna hosted the highest fungal diversity and CDC Alma and CDC Xena the lowest. Fusarium sp. was dominant in chickpea roots but was less abundant in CDC Corrine than the other cultivars. A bioassay showed that certain of these fungal taxa, including Fusarium species, can reduce the productivity of chickpea, whereas Trichoderma harzianum can increase chickpea productivity. The large variation in the profile of chickpea root mycota, which included growth-promoting and -inhibiting species, supports the possibility of improving the productivity of chickpea by improving its root mycota in chickpea genetic improvement programs using traditional breeding techniques.  相似文献   
4.
5.
To understand how pulse and oilseed crops might use nitrogen (N) more efficiently under varying levels of water and N availability in soil, we conducted a 2-year field study to monitor N accumulation in aboveground (AG-N) and root material at five growth stages, for canola (Brassica napus L.), mustard (Brassica juncea L.), chickpea (Cicer arietinum L.), dry pea (Pisum sativum L.) and lentil (Lens culinaris Medicum) alongside spring wheat (Triticum aestivum L.). Crops were grown in lysimeters (15 cm diameter × 100 cm deep) installed in the field in southern Saskatchewan, Canada. AG-N in all crops was greater under high-water than under low-water conditions. In oilseeds and wheat, AG-N increased until flowering then tended to level off, while in pulses it increased gradually to maturity. At maturity, dry pea and wheat had the greatest AG-N and mustard the least. Enhanced water availability increased seed N but did not affect straw N; consequently, N harvest index was greater under high-water than under low-water conditions. Root N increased until late-flowering or late-pod (dough stage in wheat) then decreased to maturity. Mustard had the lowest root N, chickpea the second lowest, and canola, wheat, dry pea, and lentil the highest. Improved water availability increased root N for oilseeds and wheat but did not affect root N in pulses. At maturity, average root N of oilseeds, pulses, and wheat was 14, 17, and 20 kg ha-1, respectively. At the seedling stage pulse crops had about 27% of total plant N in their roots, a much greater proportion than for the non-legumes. However, by maturity all crops had about 14% of plant N in their roots. Soil NO3-N increased gradually between seedling and maturity in non-legumes but in pulses there was a sharp spike at early flowering. Estimated apparent net N mineralized was similar for wheat and pulse crops which were greater than for canola and mustard. Soil N amounts and temporal change patterns varied substantially among crops evaluated, and these differences need to be considered in the development of diverse cropping systems where cereals, legumes, and oilseeds are included in rotation systems.  相似文献   
6.
Efficacy of Trichoderma longibrachiatum in the control of Heterodera avenae   总被引:1,自引:0,他引:1  
Trichoderma longibrachiatum can be used for the control of Heterodera avenae in crops, but the effectiveness and possible mechanisms are unknown. Here we determined the efficacy and the mechanism responsible for the nematode control in spring wheat (Triticum aestivum L.). Wheat seedlings inoculated with T. longibrachiatum at the concentrations from 1.5 × 104 to 1.5 × 108 spores ml?1 significantly increased plant height, root length, and plant biomass; decreased H. avenae infection in both rhizospheric soil and roots; and enhanced chlorophyll content, root activity, and the specific activities of resistance-related enzymes (peroxidase, polyphenol oxidase and phenylalanine ammonia lyase), compared to the control. Those reactions occurred soon after T. longibrachiatum inoculation and the effect reached the maximum 7–9 days after inoculation. Promoting competitive plant growth and inducing enzyme-trigged resistance serve as the main mechanism responsible for T. longibrachiatum against H. avenae. T. longibrachiatum can be considered an effective biocontrol agent against H. avenae in wheat.  相似文献   
7.
Hossain  Zakir  Hubbard  Michelle  Gan  Yantai  Bainard  Luke D. 《Plant and Soil》2021,460(1-2):593-607
Plant and Soil - Pulses are important crops that have been used to diversify cropping rotations in the Canadian prairies. With increasing cultivation intensity, pulses are becoming more susceptible...  相似文献   
8.
沙漠化对沙地土壤呼吸的影响及其对环境变化的响应   总被引:2,自引:0,他引:2  
赵哈林  李玉强  周瑞莲 《生态学报》2010,30(8):1972-1980
为了了解沙漠化过程中土壤呼吸速率变化及其对环境因素变化的响应,于2005年在科尔沁沙地研究了固定、半固定和流动沙地的土壤呼吸日变化和生长季动态及其与环境变化的关系,得出以下结论:(1)3种沙地土壤呼吸日变化在春季和秋季呈单峰曲线,夏季呈多峰曲线;(2)3种沙地土壤呼吸速率从春季到秋季的季节动态均呈双峰曲线,峰值分别出现在6月下旬和8月下旬;(3)固定和半固定沙地的土壤呼吸的日变化幅度明显大于流动沙地,季节变化幅度也是固定沙地半固定沙地流动沙地;(4)随着沙漠化的发展,土壤呼吸平均速率明显下降,生长季平均土壤呼吸速率从固定沙地的2.32μmolCO2/(m·2s)降为半固定的1.65μmolCO2/(m·2s)和流动沙地的1.06μmolCO2/(m·2s);(5)3种沙地土壤呼吸速率日变化均与土壤温度呈正相关,与空气湿度呈负相关,在季节尺度上3种沙地土壤呼吸速率与土壤温度、土壤水分和大气湿度均呈正相关,但只有固定沙地的相关性达到了显著水平;(6)沙漠化过程中,虽然土壤温度、土壤有机碳含量和植物根系碳含量都是导致沙地土壤呼吸发生改变的重要因子,但制约其变化的关键因子还是土壤水分和空气湿度。  相似文献   
9.

Purpose  

Best agricultural practices can be adopted to increase crop productivity and lower carbon footprint of grain products. The aims of this study were to provide a quantitative estimate of the carbon footprint of selected oilseed crops grown on the semiarid northern Great Plains and to determine the effects of N fertilization and environments on the carbon footprint.  相似文献   
10.
基于海洋渔业资源常规调查和河口定置网取样资料 ,将调查期间同一鱼种各取样时刻的消化道 (或胃 )内含物量视为发生在 2 4小时内的同一样本空间的不同事件 ,根据消化道内含物的变动确定鱼类的不摄食时段以计算排空率。为定量早期幼鱼及消化系统复杂的鱼类消化道内含物重量 ,建立了空消化道重 (EDW ) -体长(BL) -体重 (BW )经验关系式 ,即EDW =α BWBLβ δ。应用Eggers模型或Elliott Persson模型对日摄食量进行评估。研究获得以下鱼类的日摄食量 (约占体重百分比 ) :渤海大面调查所获幼鱼 ,蓝点马鲛 (Scomberomorusniphonius,16 0 1± 1 96cm ,3 0 95± 12 3 2 g ,n =159) 13 5%、黄鲫 (Setipinnataty ,7 2 6± 1 99cm ,2 89±4 0 8g ,n =2 3 9) 15%、小黄鱼 (Pseudosciaenapolyactis ,6 84± 1 41cm ,6 94± 4 0 7g ,n =2 72 ) 13 5% ,斑(Konosiruspunctatus ,9 49± 0 91cm ,10 0 8± 3 2 8g ,n =10 7) 110 % ;河口定置网所获早期幼鱼 ,斑 (1 77± 0 2 1cm ,0 0 4± 0 0 2g ,n =50 5) 40 % ,黄鳍刺虎鱼 (Acanthogobiusflavimanus ,1 82± 0 16cm ,0 0 6±0 0 1g ,n =93 0 ) 15%  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号