首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1809篇
  免费   96篇
  国内免费   4篇
  2023年   22篇
  2022年   27篇
  2021年   109篇
  2020年   43篇
  2019年   61篇
  2018年   82篇
  2017年   57篇
  2016年   63篇
  2015年   88篇
  2014年   111篇
  2013年   128篇
  2012年   129篇
  2011年   139篇
  2010年   54篇
  2009年   54篇
  2008年   75篇
  2007年   64篇
  2006年   75篇
  2005年   52篇
  2004年   31篇
  2003年   35篇
  2002年   27篇
  2001年   31篇
  2000年   30篇
  1999年   27篇
  1998年   8篇
  1997年   8篇
  1995年   4篇
  1994年   18篇
  1993年   10篇
  1992年   17篇
  1991年   16篇
  1990年   20篇
  1989年   18篇
  1988年   12篇
  1987年   17篇
  1986年   14篇
  1985年   21篇
  1984年   13篇
  1983年   9篇
  1982年   9篇
  1981年   7篇
  1979年   6篇
  1977年   7篇
  1976年   5篇
  1974年   8篇
  1973年   6篇
  1972年   8篇
  1971年   8篇
  1970年   7篇
排序方式: 共有1909条查询结果,搜索用时 15 毫秒
1.
2.
Mixed convection peristaltic flow of Jeffrey nanofluid in a channel with compliant walls is addressed here. The present investigation includes the viscous dissipation, thermal radiation and Joule heating. Whole analysis is performed for velocity, thermal and concentration slip conditions. Related problems through long wavelength and low Reynolds number are examined for stream function, temperature and concentration. Impacts of thermal radiation, Hartman number, Brownian motion parameter, thermophoresis, Joule heating and slip parameters are explored in detail. Clearly temperature is a decreasing function of Hartman number and radiation parameter.  相似文献   
3.
A significant proportion of enzymes display cooperativity in binding ligand molecules, and such effects have an important impact on metabolic regulation. This is easiest to understand in the case of positive cooperativity. Sharp responses to changes in metabolite concentrations can allow organisms to better respond to environmental changes and maintain metabolic homeostasis. However, despite the fact that negative cooperativity is almost as common as positive, it has been harder to imagine what advantages it provides. Here we use computational models to explore the utility of negative cooperativity in one particular context: that of an inhibitor binding to an enzyme. We identify several factors which may contribute, and show that acting together they can make negative cooperativity advantageous.  相似文献   
4.
5.
DNA photolyase is perhaps the most ancient and direct arsenal in curing the UV-induced dimers formed in the microbial genome. Out of two cofactors of the enzyme, catalytic and light harvesting, differences in the latter have provided basis for categorizing photolyases of prokaryotes as folate and deazaflavin types. In the present study, the homology modeling of DNA photolyase of Enterococcus faecalis was undertaken. The predicted models were structurally compared with the crystal structure coordinates of photolyases from Escherichia coli (folate type) and Anacystis nidulans (deazaflavin type). Discrepancies present in the multiple sequence alignment and tertiary structures, particularly at the light harvesting cofactor (methenyltetrahydrofolic acid, MTHF; 8-hydroxy-5-deazaflavin, 8-HDF) binding sites indicated the mechanistic nature of enterococcal photolyase. Concisely, despite the greater holistic homology with folate-type photolyase, enterococcal photolyase was characterized as deazaflavin-type. The presence of 8-HDF binding sites and groove architecture of substrate binding sites were also found supportive in this regard. The inter cofactor distance and/or orientation also implied to the efficient energy transfer in photolyase of Enterococcus in comparison with E. coli. In addition, we observed relatively high protein deformability in the enterococcal genome, which may favors the repair action of photolyase. The findings are expected to provide molecular insights into the difference in sunlight inactivation rate of two important fecal contamination indicators, namely Enterococcus and E. coli.  相似文献   
6.
Surface properties of Sendai virus envelope membrane have been measured, using both biological and biophysical techniques. Both normal and trypsin-treated virus were studied. SDS gel electrophoresis showed cleavage of the F protein exclusively by trypsin. The major activity change was observed in the hemolysing activity which is an expression of F protein. Hemolysis was reduced to less than 10% of its value for intact virus. 31P nuclear magnetic resonance studies of the envelope surface of the native virus showed a highly restricted phospholipid headgroup environment. Interestingly, this restriction was relieved by treatment with trypsin. Thus these data suggest a role of the F protein of Sendai virus in tightly organizing the surface of the viral envelope membrane.  相似文献   
7.
Trogtalite CoSe2 nanobuds encapsulated into boron and nitrogen codoped graphene (BCN) nanotubes (CoSe2@BCN‐750) are synthesized via a concurrent thermal decomposition and selenization processes. The CoSe2@BCN‐750 nanotubes deliver an excellent storage capacity of 580 mA h g?1 at current density of 100 mA g?1 at 100th cycle, as the anode of a sodium ion battery. The CoSe2@BCN‐750 nanotubes exhibit a significant rate capability (100–2000 mA g?1 current density) and high stability (almost 98% storage retention after 4000 cycles at large current density of 8000 mA g?1). The reasons for these excellent storage properties are illuminated by theoretical calculations of the relevant models, and various possible Na+ ion storage sites are identified through first‐principles calculations. These results demonstrate that the insertion of heteroatoms, B–C, N–C as well as CoSe2, into BCN tubes, enables the observed excellent adsorption energy of Na+ ions in high energy storage devices, which supports the experimental results.  相似文献   
8.
We hypothesized that resistive breathing of moderate to high intensity might increase diaphragm oxidative stress, which could be partially attenuated by antioxidants. Our objective was to assess the levels of oxidative stress in the dog diaphragm after respiratory muscle training of a wide range of intensities and whether N-acetyl-cysteine (NAC) might act as an antioxidant. Twelve Beagle dogs were anesthetized with 1% propophol, tracheostomized, and subjected to continuous inspiratory resistive breathing (IRB) (2 h/day for 2 wk). They were further divided into two groups (n = 6): NAC group (oral NAC administration/24 h for 14 days) and control group (placebo). Diaphragm biopsies were obtained before (baseline biopsy) and after (contralateral hemidiaphragm) IRB and NAC vs. placebo treatment. Oxidative stress was evaluated in all diaphragm biopsies through determination of 3-nitrotyrosine immunoreactivity, protein carbonylation, hydroxynoneal protein adducts, Mn-SOD, and catalase, using immunoblotting and immunohistochemistry. Both protein tyrosine nitration and protein carbonylation were directly related to the amount of the respiratory loads, and NAC treatment abrogated this proportional rise in these two indexes of oxidative stress in response to increasing inspiratory loads. A post hoc analysis revealed that only the diaphragms of dogs subjected to high-intensity loads showed a significant increase in both protein tyrosine nitration and carbonylation, which were also significantly reduced by NAC treatment. These results suggest that high-intensity respiratory loading-induced oxidative stress may be neutralized by NAC treatment during IRB in the canine diaphragm.  相似文献   
9.
Human calumenin (hCALU) is a six EF-hand protein belonging to the CREC family. As other members of the family, it is localized in the secretory pathway and regulates the activity of SERCA2a and of the ryanodine receptor in the endoplasmic reticulum (ER). We have studied the effects of Ca2+ binding to the protein and found it to attain a more compact structure upon ion binding. Circular Dichroism (CD) measurements suggest a major rearrangement of the protein secondary structure, which reversibly switches from disordered at low Ca2+ concentrations to predominantly alpha-helical when Ca2+ is added. SAXS experiments confirm the transition from an unfolded to a compact structure, which matches the structural prediction of a trilobal fold. Overall our experiments suggest that calumenin is a Ca2+ sensor, which folds into a compact structure, capable of interacting with its molecular partners, when Ca2+ concentration within the ER reaches the millimolar range.  相似文献   
10.
Organ cultures of newborn rat lungs synthesize and accumulate DNA, RNA, collagen and noncollagenous proteins almost at a linear rate for at least 5 days. During this period the synthesis of collagen consistently exceeds the synthesis of noncollagenous proteins in a pattern similar to neonatal lung growth in vivo. Although some morphological characteristics of lung architecture are distorted after culture, fundamental structural similarities to lungs growing in intact animals are retained. When these cultures are maintained in atmospheres rich in oxygen, increased collagen synthesis is observed, a response similar to that of lungs in intact animals exposed to high oxygen concentrations in vivo. Our studies suggest that lung organ cultures may be a suitable system for investigating the biochemical aspects of lung tissue-environmental interaction. These studies were supported in parts by NIH Grant HL-19668, a contract (68-03-2005) from the U.S. Environmental Protection Agency, and grants from the California Lung Association.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号