首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Light-harvesting and resonance energy transfer to the catalytic FAD cofactor are key roles for the antenna chromophores of light-driven DNA photolyases, which remove UV-induced DNA lesions. So far, five chemically diverse chromophores have been described for several photolyases and related cryptochromes, but no correlation between phylogeny and used antenna has been found. Despite a common protein topology, structural analysis of the distantly related class II photolyase from the archaeon Methanosarcina mazei (MmCPDII) as well as plantal orthologues indicated several differences in terms of DNA and FAD binding and electron transfer pathways. For MmCPDII we identify 8-hydroxydeazaflavin (8-HDF) as cognate antenna by in vitro and in vivo reconstitution, whereas the higher plant class II photolyase from Arabidopsis thaliana fails to bind any of the known chromophores. According to the 1.9 Å structure of the MmCPDII·8-HDF complex, its antenna binding site differs from other members of the photolyase-cryptochrome superfamily by an antenna loop that changes its conformation by 12 Å upon 8-HDF binding. Additionally, so-called N- and C-motifs contribute as conserved elements to the binding of deprotonated 8-HDF and allow predicting 8-HDF binding for most of the class II photolyases in the whole phylome. The 8-HDF antenna is used throughout the viridiplantae ranging from green microalgae to bryophyta and pteridophyta, i.e. mosses and ferns, but interestingly not in higher plants. Overall, we suggest that 8-hydroxydeazaflavin is a crucial factor for the survival of most higher eukaryotes which depend on class II photolyases to struggle with the genotoxic effects of solar UV exposure.  相似文献   

2.
Photolyases contain two chromophores, flavin plus either methenyltetrahydrofolate (MTHF) or 8-OH-5-deazaflavin (HDF). Amino acid sequence comparison reveals that all photolyases sequenced to date have extensive sequence homology in the carboxyl-terminal half; in the amino-terminal region the folate and deazaflavin class enzymes are more homologous to other members of the same class. This modular arrangement of sequence homologies suggests that the amino-terminal half of photolyase is involved in MTHF or HDF binding whereas the carboxyl-terminal half carries the flavin binding site. In this study we attempted to identify such structural domains of yeast photolyase by partial proteolysis and gene fusion techniques. Partial digestion with chymotrypsin yielded an amino-terminal 34-kDa fragment containing tightly bound MTHF and a carboxyl-terminal 20-kDa polypeptide which lacked chromophore or DNA binding activity. However, a fusion protein carrying the carboxyl-terminal 275 amino acids of yeast photolyase bound specifically to FAD but not to MTHF or DNA. We conclude that the amino-terminal half of yeast photolyase constitutes the folate binding domain and that the carboxyl-terminal half carries the flavin binding site.  相似文献   

3.
UV exposure of DNA molecules induces serious DNA lesions. The cyclobutane pyrimidine dimer (CPD) photolyase repairs CPD-type - lesions by using the energy of visible light. Two chromophores for different roles have been found in this enzyme family; one catalyzes the CPD repair reaction and the other works as an antenna pigment that harvests photon energy. The catalytic cofactor of all known photolyases is FAD, whereas several light-harvesting cofactors are found. Currently, 5,10-methenyltetrahydrofolate (MTHF), 8-hydroxy-5-deaza-riboflavin (8-HDF) and FMN are the known light-harvesting cofactors, and some photolyases lack the chromophore. Three crystal structures of photolyases from Escherichia coli (Ec-photolyase), Anacystis nidulans (An-photolyase), and Thermus thermophilus (Tt-photolyase) have been determined; however, no archaeal photolyase structure is available. A similarity search of archaeal genomic data indicated the presence of a homologous gene, ST0889, on Sulfolobus tokodaii strain7. An enzymatic assay reveals that ST0889 encodes photolyase from S. tokodaii (St-photolyase). We have determined the crystal structure of the St-photolyase protein to confirm its structural features and to investigate the mechanism of the archaeal DNA repair system with light energy. The crystal structure of the St-photolyase is superimposed very well on the three known photolyases including the catalytic cofactor FAD. Surprisingly, another FAD molecule is found at the position of the light-harvesting cofactor. This second FAD molecule is well accommodated in the crystal structure, suggesting that FAD works as a novel light-harvesting cofactor of photolyase. In addition, two of the four CPD recognition residues in the crystal structure of An-photolyase are not found in St-photolyase, which might utilize a different mechanism to recognize the CPD from that of An-photolyase.  相似文献   

4.
Light-induced activation of class II cyclobutane pyrimidine dimer (CPD) photolyases of Arabidopsis thaliana and Oryza sativa has been examined by UV/Vis and pulsed Davies-type electron-nuclear double resonance (ENDOR) spectroscopy, and the results compared with structure-known class I enzymes, CPD photolyase and (6–4) photolyase. By ENDOR spectroscopy, the local environment of the flavin adenine dinucleotide (FAD) cofactor is probed by virtue of proton hyperfine couplings that report on the electron-spin density at the positions of magnetic nuclei. Despite the amino-acid sequence dissimilarity as compared to class I enzymes, the results indicate similar binding motifs for FAD in the class II photolyases. Furthermore, the photoreduction kinetics starting from the FAD cofactor in the fully oxidized redox state, FADox, have been probed by UV/Vis spectroscopy. In Escherichia coli (class I) CPD photolyase, light-induced generation of FADH from FADox, and subsequently FADH? from FADH, proceeds in a step-wise fashion via a chain of tryptophan residues. These tryptophans are well conserved among the sequences and within all known structures of class I photolyases, but completely lacking from the equivalent positions of class II photolyase sequences. Nevertheless, class II photolyases show photoreduction kinetics similar to those of the class I enzymes. We propose that a different, but also effective, electron-transfer cascade is conserved among the class II photolyases. The existence of such electron transfer pathways is supported by the observation that the catalytically active fully reduced flavin state obtained by photoreduction is maintained even under oxidative conditions in all three classes of enzymes studied in this contribution.  相似文献   

5.
H Yajima  H Inoue  A Oikawa    A Yasui 《Nucleic acids research》1991,19(19):5359-5362
We cloned a genomic fragment of a photolyase gene from Neurospora crassa by polymerase chain reaction using synthesized oligonucleotide primers designed from the most conserved amino acid sequences among photolyases of various organisms. Using the cloned fragment as a hybridization probe we isolated a genomic fragment and cDNA clones encoding the complete photolyase gene of this organism. The amino acid sequence of the photolyase deduced from the determined nucleotide sequence indicates a protein consisting of 615 amino acid residues (Mr 69,971), which is most similar to that of Saccharomyces cerevisiae. Like yeast photolyase it contains a protruding amino terminus which is missing in photolyases of bacterial origin. Comparison of amino acids sequences among six photolyases suggests that the Neurospora crassa photolyase is more similar to photolyases of pterin type than those of deazaflavin type.  相似文献   

6.
DNA photolyase specifically repairs UV light-induced cyclobutane-type pyrimidine dimers in DNA through a light-dependent reaction mechanism. We have obtained photolyase genes from Drosophila melanogaster (fruit fly), Oryzias latipes (killifish) and the marsupial Potorous tridactylis (rat kangaroo), the first photolyase gene cloned from a mammalian species. The deduced amino acid sequences of these higher eukaryote genes show only limited homology with microbial photolyase genes. Together with the previously cloned Carassius auratus (goldfish) gene they form a separate group of photolyase genes. A new classification for photolyases comprising two distantly related groups is proposed. For functional analysis P.tridactylis photolyase was expressed and purified as glutathione S-transferase fusion protein from Escherichia coli cells. The biologically active protein contained FAD as light-absorbing cofactor, a property in common with the microbial class photolyases. Furthermore, we found in the archaebacterium Methanobacterium thermoautotrophicum a gene similar to the higher eukaryote photolyase genes, but we could not obtain evidence for the presence of a homologous gene in the human genome. Our results suggest a divergence of photolyase genes in early evolution.  相似文献   

7.
Oztürk N  Kao YT  Selby CP  Kavakli IH  Partch CL  Zhong D  Sancar A 《Biochemistry》2008,47(39):10255-10261
The photolyase/cryptochrome family is a large family of flavoproteins that encompasses DNA repair proteins, photolyases, and cryptochromes that regulate blue-light-dependent growth and development in plants, and light-dependent and light-independent circadian clock setting in animals. Phylogenetic analysis has revealed a new class of the family, named type III photolyase, which cosegregates with plant cryptochromes. Here we describe the isolation and characterization of a type III photolyase from Caulobacter crescentus. Spectroscopic analysis shows that the enzyme contains both the methenyl tetrahydrofolate photoantenna and the FAD catalytic cofactor. Biochemical analysis shows that it is a bona fide photolyase that repairs cyclobutane pyrimidine dimers. Mutation of an active site Trp to Arg disrupts FAD binding with no measurable effect on MTHF binding. Using enzyme preparations that contain either both chromophores or only folate, we were able to determine the efficiency and rate of transfer of energy from MTHF to FAD.  相似文献   

8.
DNA photolyase can repair UV-induced DNA damage in a light-dependent manner. A cDNA of (6-4)photolyase from Dunaliella salina (GenBank accession number: AY845324) was cloned, sequenced and its amino acid sequence was deduced. The derived amino acid sequence showed high homology with other (6-4)photolyases and a predicted 3D model was constructed by homology modeling. Revisions requested 20 May 2005 and 18 August 2005; Revisions received 2 August 2005 and 28 November 2005  相似文献   

9.
10.
The organization and nucleotide sequence of a gene from Chlamydomonas reinhardtii encoding a member of the DNA photolyase/blue light photoreceptor protein family is reported. A region of over 7 kb encompassing the gene was sequenced. Northern analysis detected a single 4.2 kb mRNA. The gene consists of eight exons and seven introns, and encodes a predicted protein of 867 amino acids. The first 500 amino acids exhibit significant homology with previously sequenced DNA photolyases, showing the closest relationship to mustard (Sinapis alba) photolyase (43% identity). An even higher identity, 49%, is obtained when the Chlamydomonas gene product is compared to the putative blue-light photoreceptor (HY4) from Arabidopsis thaliana. Both the Chlamydomonas and the Arabidopsis proteins differ from the well characterized DNA photolyases in that they contain a carboxyl terminal extension of 367 and 181 amino acids, respectively. However, there is very little homology between the carboxyl terminal domains of the two proteins. A previously isolated Chlamydomonas mutant, phrl, which is deficient in DNA photolyase activity, especially in the nucleus, was shown by RFLP analysis not to be linked to the gene we have isolated. We propose this gene encodes a candidate Chlamydomonas blue light photoreceptor.  相似文献   

11.
DNA photolyase from the cyanobacterium Anacystis nidulans contains two chromophores, flavin adenine dinucleotide (FADH2) and 8-hydroxy-5-deazaflavin (8-HDF) (Eker, A. P. M., Kooiman, P., Hessels, J. K. C., and Yasui, A. (1990) J. Biol. Chem. 265, 8009-8015). While evidence exists that the flavin chromophore (in FADH2 form) can catalyze photorepair directly and that the 8-HDF chromophore is the major photosensitizer in photoreactivation it was not known whether 8-HDF splits pyrimidine dimer directly or indirectly through energy transfer to FADH2 at the catalytic center. We constructed a plasmid which over-produces the A. nidulans photolyase in Escherichia coli and purified the enzyme from this organism. Apoenzyme was prepared and enzyme containing stoichiometric amounts of either or both chromophores was reconstituted. The substrate binding and catalytic activities of the apoenzyme (apoE), E-FADH2, E-8-HDF, E-FAD(ox)-8-HDF, and E-FADH2-8-HDF were investigated. We found that FAD is required for substrate binding and catalysis and that 8-HDF is not essential for binding DNA, and participates in catalysis only through energy transfer to FADH2. The quantum yields of energy transfer from 8-HDF to FADH2 and of electron transfer from FADH2 to thymine dimer are near unity.  相似文献   

12.
Y F Li  A Sancar 《Biochemistry》1990,29(24):5698-5706
Escherichia coli DNA photolyase repairs pyrimidine dimers by a photoinduced electron-transfer reaction. The enzyme binds to UV-damaged DNA independent of light (the dark reaction) and upon absorbing a 300-500-nm photon breaks the cyclobutane ring of the dimer (the light reaction) and thus restores the DNA. No structural information on the enzyme is available at present. However, comparison of the sequences of photolyases from five different organisms has identified highly conserved regions of homology. These regions are presumably involved in chromophore (flavin and folate) and substrate binding or catalysis. Trp277 (W277) in E. coli photolyase is conserved in all photolyases sequenced to date. We replaced this residue with Arg, Glu, Gln, His, and Phe by site-specific mutagenesis. Properties of the mutant proteins indicate that W277 is involved in binding to DNA but not in chromophore binding or catalysis. Of particular significance is the finding that compared to wild type W277R and W277E mutants have about 300- and 1000-fold lower affinity, respectively, for substrate but were indistinguishable from wild-type enzyme in their photochemical and photocatalytic properties.  相似文献   

13.
Photolyases are thought to be critical components of the defense of plants against damage to DNA by solar ultraviolet light, but nothing is known about their molecular or enzymatic nature. The molecular cloning of a photolyase from mustard ( Sinapis alba ) described here is intended to increase the knowledge about this important repair mechanism in plant species at a molecular level. The gene encodes a polypeptide of 501 amino acids with a predicted molecular mass of 57 kDa. There is a strong sequence similarity to bacterial and yeast photolyases, with a close relationship to enzymes with a deazaflavin chromophor. The plant photolyase is shown to be functional in Escherichia coli which also indicates conservation of photolyases during evolution. It is demonstrated that photolyase expression in plants is light induced, thus providing good evidence for the adaptation of plants to their environment in order to diminish the harmful effects of sunlight.  相似文献   

14.
By using a synthetic DNA probe derived from an amino acid sequence in the most conserved region of three known photolyases (Escherichia coli, Anacystis nidulans and Saccharomyces cerevisiae), we isolated a DNA fragment containing two long open reading frames (ORFs) from a genomic DNA library of Streptomyces griseus. One ORF encodes a polypeptide of 455 amino acids (Mr 50594), which exhibits substantial similarities with the other three photolyases. Photoreactivation-repair deficient E. coli cells could be converted into photoreactivatable ones by introduction of plasmids harboring this ORF, indicating that this is the photolyase gene of S. griseus. The deduced aa sequence of Streptomyces photolyase was most similar to that of E. coli. The putative DNA binding site as well as cofactor binding regions were proposed.  相似文献   

15.
Summary Partial homology of Salmonella typhimurium DNA to Escherichia coli DNA was demonstrated by Southern hybridization blots to exist on either side of the lac operon of E. coli but no homology was detected between S. typhimurium DNA and about 12 kb of E. coli DNA including the lac genes as well as about 5 kb of E. coli DNA between lac and proC. Thus portions of DNA seem to have been either added to the E. coli genome or deleted from the S. typhimurium genome since their divergence from a common ancestor. Although an IS1 element was located near the lac operon of E. coli, the insertional element was shown not to be near any of the junctures of discontinuity of E. coli - S. typhimurium homology near lac.  相似文献   

16.
Aims: In this work, we aimed to identify an effective treatment of infections caused by Enterococcus spp. strains resistant to conventional antibiotics. Methods and Results: We report the isolation and characterization of a new lytic bacteriophage, designated bacteriophage EFAP‐1, that is capable of lysing Enterococcus faecalis bacteria that exhibit resistance to multiple antibiotics. EFAP‐1 has low sequence similarity to all known bacteriophages. Transmission electron microscopy confirmed that EFAP‐1 belongs to the Siphoviridae family. A putative lytic protein of EFAP‐1, endolysin EFAL‐1, is encoded in ORF 2 and was expressed in Escherichia coli. Recombinant EFAL‐1 had broad‐spectrum lytic activity against several Gram‐positive pathogens, including Ent. faecalis and Enterococcus faecium. Conclusions: The complete genome sequence of the newly isolated enterococcal lytic phage was analysed, and it was demonstrated that its recombinant endolysin had broad lytic activity against various Gram‐positive pathogens. Significance and Impact of the Study: Bacteriophage EFAP‐1 and its lytic protein, EFAL‐1, can be utilized as potent antimicrobial agents against Enterococcus spp. strains resistant to conventional antibiotics in hospital infections and also as environmental disinfectants to control disease‐causing Enterococcus spp. in dairy farms.  相似文献   

17.
Class II photolyases ubiquitously occur in plants, animals, prokaryotes and some viruses. Like the distantly related microbial class I photolyases, these enzymes repair UV-induced cyclobutane pyrimidine dimer (CPD) lesions within duplex DNA using blue/near-UV light. Methanosarcina mazei Mm0852 is a class II photolyase of the archaeal order of Methanosarcinales, and is closely related to plant and metazoan counterparts. Mm0852 catalyses light-driven DNA repair and photoreduction, but in contrast to class I enzymes lacks a high degree of binding discrimination between UV-damaged and intact duplex DNA. We solved crystal structures of Mm0852, the first one for a class II photolyase, alone and in complex with CPD lesion-containing duplex DNA. The lesion-binding mode differs from other photolyases by a larger DNA-binding site, and an unrepaired CPD lesion is found flipped into the active site and recognized by a cluster of five water molecules next to the bound 3'-thymine base. Different from other members of the photolyase-cryptochrome family, class II photolyases appear to utilize an unusual, conserved tryptophane dyad as electron transfer pathway to the catalytic FAD cofactor.  相似文献   

18.
Escherichia coli DNA photolyase catalyzes the light-driven (300-500 nm) repair of pyrimidine dimers formed between adjacent pyrimidine bases in DNA exposed to UV light (200-300 nm). The light-driven repair process is facilitated by two enzyme-bound cofactors, FADH2 and 5,10-methenyltetrahydrofolate. The function of the folate has been characterized in greater detail in this series of experiments. Investigations of the relative binding affinities of photolyase for the monoglutamate and polyglutamate forms of 5,10-methenyltetrahydrofolate show that the enzyme has a greater affinity for the naturally occurring polyglutamate forms of the folate and that the exogenously added monoglutamate derivative is less tightly associated with the protein. Multiple turnover experiments reveal that the folate remains bound to photolyase even after 10 turnovers of the enzyme. Examination of the rates of repair by photolyase containing stoichiometric folate in the presence or absence of free folate under multiple turnover conditions and at micromolar concentrations of enzyme also demonstrates that the folate acts catalytically. The stimulation of turnover by exogenous folate seen at low concentrations of photolyase is shown to be due to the lower affinity of photolyase for the monoglutamate derivative used in reconstitution procedures. These results demonstrate that the folate of E. coli DNA photolyase is a bona fide cofactor and does not decompose or dissociate during multiple turnovers of the enzyme.  相似文献   

19.
DNA photolyases catalyze the light-dependent repair of pyrimidine dimers in DNA. The results of nucleotide sequence analysis and spectroscopic studies demonstrated that photolyases from Saccharomyces cerevisiae and Escherichia coli share 37% amino acid sequence homology and contain identical chromophores. Do the similarities between these two enzymes extend to their interactions with DNA containing pyrimidine dimers, or does the organization of DNA into nucleosomes in S. cerevisiae necessitate alternative or additional recognition determinants? To answer this question, we used chemical and enzymatic techniques to identify the contacts made on DNA by S. cerevisiae photolyase when it is bound to a pyrimidine dimer and compared these contacts with those made by E. coli photolyase and by a truncated derivative of the yeast enzyme when bound to the same substrate. We found evidence for a common set of interactions between the photolyases and specific phosphates in the backbones of both strands as well as for interactions with bases in both the major and minor grooves of dimer-containing DNA. Superimposed on this common pattern were significant differences in the contributions of specific contacts to the overall binding energy, in the interactions of the enzymes with groups on the complementary strand, and in the extent to which other DNA-binding proteins were excluded from the region around the dimer. These results provide strong evidence both for a conserved dimer-binding motif and for the evolution of new interactions that permit photolyases to also act as accessory proteins in nucleotide excision repair. The locations of the specific contacts made by the yeast enzyme indicate that the mechanism of nucleotide excision repair in this organism involves incision(s) at a distance from the pyrimidine dimer.  相似文献   

20.
The genome of Chrysodeixis chalcites nucleopolyhedrovirus (ChchNPV) contains two open reading frames, Cc-phr1 and Cc-phr2, which encode putative class II CPD-DNA photolyases. CPD-photolyases repair UV-induced pyrimidine cyclobutane dimers using visible light as an energy source. Expression of Cc-phr2 provided photolyase deficient Escherichia coli cells with photoreactivating activity indicating that Cc-phr2 encodes an active photolyase. In contrast, Cc-phr1 did not rescue the photolyase deficiency. Cc-phr2 was overexpressed in E. coli and the resulting photolyase was purified till apparent homogeneity. Spectral measurements indicated the presence of FAD, but a second chromophore appeared to be absent. Recombinant Cc-phr2 photolyase was found to bind specifically F0 (8-hydroxy-7,8-didemethyl-5-deazariboflavin), which is an antenna chromophore present in various photolyases.. After reconstitution, FAD and F0 were present in approximately equimolar amounts. In reconstituted photolyase the F0 chromophore is functionally active as judged from the increase in the in vitro repair activity. This study demonstrates for the first time that a functional photolyase is encoded by an insect virus, which may have implications for the design of a new generation of baculoviruses with improved performance in insect pest control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号