首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85篇
  免费   6篇
  国内免费   7篇
  2022年   3篇
  2021年   2篇
  2020年   6篇
  2019年   1篇
  2018年   3篇
  2017年   3篇
  2016年   4篇
  2015年   2篇
  2014年   9篇
  2013年   8篇
  2012年   8篇
  2011年   7篇
  2010年   5篇
  2009年   4篇
  2008年   8篇
  2007年   3篇
  2006年   3篇
  2005年   3篇
  2004年   2篇
  2003年   3篇
  2002年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1993年   4篇
  1992年   1篇
  1991年   1篇
排序方式: 共有98条查询结果,搜索用时 893 毫秒
1.
To establish infection, plant viruses are evolutionarily empowered with the ability to spread intercellularly. Potyviruses represent the largest group of known plant-infecting RNA viruses, including many agriculturally important viruses. To better understand intercellular movement of potyviruses, we used turnip mosaic virus (TuMV) as a model and constructed a double-fluorescent (green and mCherry) protein-tagged TuMV infectious clone, which allows distinct observation of primary and secondary infected cells. We conducted a series of deletion and mutation analyses to characterize the role of TuMV coat protein (CP) in viral intercellular movement. TuMV CP has 288 amino acids and is composed of three domains: the N-terminus (amino acids 1–97), the core (amino acids 98–245), and the C-terminus (amino acids 246–288). We found that deletion of CP or its segments amino acids 51–199, amino acids 200–283, or amino acids 265–274 abolished the ability of TuMV to spread intercellularly but did not affect virus replication. Interestingly, deletion of amino acids 6–50 in the N-terminus domain resulted in the formation of aberrant virions but did not significantly compromise TuMV cell-to-cell and systemic movement. We identified the charged residues R178 and D222 within the core domain that are essential for virion formation and TuMV local and systemic transport in plants. Moreover, we found that trans-expression of the wild-type CP either by TuMV or through genetic transformation-based stable expression could not rescue the movement defect of CP mutants. Taken together these results suggest that TuMV CP is not essential for viral genome replication but is indispensable for viral intercellular transport where only the cis-expressed CP is functional.  相似文献   
2.
受伤和体弱白鹤的救护及放归是白鹤保护的重要方式之一。2014—2016年间,先后对8只救护白鹤和2只野生白鹤进行环志并安装卫星跟踪器,根据所获得的卫星跟踪数据来分析比较救护白鹤与野生白鹤在秋季迁徙路线和在重要中途停歇地的最大日活动距离、活动区分布和面积、生境类型等方面的异同。结果显示,救护白鹤放归当年与放归次年以及救护白鹤放归当年与野生白鹤的秋季迁徙路线和活动规律之间存在明显差异,但救护白鹤放归次年与野生白鹤之间差异不明显。(1)放归当年,4只救护白鹤在农田和水塘停歇1个月左右,停歇时长明显高于野生白鹤和放归次年的救护白鹤。(2)救护白鹤放归当年在跨海方式、登陆地点、停歇地点以及登陆后的迁徙方向上表现出多样性和不确定性,其中部分个体在迁徙过程中有停顿徘徊、迷失迁徙方向的现象,且跨越渤海和大别山的距离大于放归次年的救护白鹤和野生白鹤。(3)救护白鹤放归后4天内每日最大活动距离小,而后高低分化明显,无明显规律,而救护白鹤放归次年的每日最大活动距离规律变化与野生白鹤较一致。(4)与救护白鹤放归次年以及野生白鹤的活动规律相比,救护白鹤放归当年的栖息地位点变化频繁,具体表现为生境类型选择的多样化,且无明显规律,同时活动区面积较小。探索救护白鹤放归野外后与野生白鹤迁徙路线和活动规律的差异,对救护白鹤的科学放归具有指导意义。  相似文献   
3.
Background aimsToll-like receptors (TLRs) play an important role in innate and adaptive immunity by recognizing pathogen-associated molecular patterns (PAMPs).MethodsIn the present study, we investigated the expression and role of TLRs on human umbilical cord mesenchymal stromal cells (UC-MSCs). The proliferation, differentiation and immunoregulatory activity of UC-MSCs primed with or without TLR ligands were determined.ResultsAt the RNA level, the expression of TLR2, 4, 6 and 9 was relatively higher than that of other TLRs. However, TLR3 and TLR4 expression were relatively higher at the protein level. UC-MSCs expressed functional TLRs by nuclear factor-κB activation and cytokine expression assay. Poly-inosinic acid:cytidylic acid [Poly(I:C)] stimulation inhibited the proliferation of UC-MSCs, but the ligand of other TLRs had no significant effect. Poly(I:C) stimulation enhanced the adipogenic differentiation capability of UC-MSCs, but lipopolysaccharide inhibited the adipogenic differentiation. Poly(I:C) and CpG-oligonucleotide promoted the immunosuppressive potentiality of UC-MSCs, accompanied with the phosphorylation of interferon regulatory factor 3 (IRF3) and increased expression of indoleamine 2,3-dioxygenase and interferon β, whereas activation of other TLR ligands (synthetic analog fibroblast-stimulating lipopeptide-1 and lipopolysaccharide) failed to affect the immunoregulatory activity of UC-MSCs.ConclusionsTaken together, our data demonstrated that TLR activation influenced the function of UC-MSCs, which might have important implications in future efforts to explore the clinical potentials of UC-MSCs.  相似文献   
4.
Honeydew production plays a key role in mutualism between the mealybugs and ants. However, no studies have focused on the amount and circadian rules of honeydew excreted by Phenacoccus solenopsis Tinsley, a new invasive species which has conditional mutualism with Solenopsis invicta Buren in China. To address this problem, we measured the weight and estimated honeydew production in all stages of development of the invasive mealybug, P. solenopsis, as well as its honeydew production on tomato (Solanum lycopersicun), Hibiscus rosa-sinensis, and cotton (Gossypium sp.) for 24 h. The honeydew excreted by each instar of the mealybug in H. rosa-sinensis was measured for 2 weeks. Our results revealed that the weight of mealybugs significantly varied at different development stages. Host plants had no significant effect on the weight of nymphs, although the weight of a single adult reared on S. lycopersicun was significantly heavier than those reared on H. rosa-sinensis and G. sp. The amount of honeydew excreted by the 1st instar nymphs in S. lycopersicum was significantly greater than that on H. rosa-sinensis and G. sp. Each instar mealybug produced more honeydew when fed with S. lycopersicum compared with H. rosa-sinensis and G. sp. The amount of honeydew excreted by mealybugs when provisioned with H. rosa-sinensis was no different from mealybugs provisioned with G. spp. while in the same instar. The amount of honeydew excreted by the 1st and 2nd instar nymphs was not significantly different on the same host plant. However, there was a significant difference between the 3rd instar nymph and the adult. The amount of honeydew excreted by a single adult when provisioned with H. rosa-sinensis decreased from 3085.3 μg to 572.0 μg in 2 weeks. The 2nd instar nymph, 3rd instar nymph, and adult excreted honeydew more frequently during the day than at night, while the frequency of honeydew excretion of the 1st instar nymph had no significant difference between daytime and night.  相似文献   
5.
Zinc has been shown to be an inhibitor of apoptosis for many years. The present study was designed to investigate effects of three zinc chemical forms on H2O2-induced cell apoptosis in IEC-6 cells via analysis of cell vitality, LDH activity, apoptosis percentage, caspase-3 activity, and Bcl-2, Bax, and caspase-3, -8, and -9 gene expression. Cells were divided into H2O2 and zinc sources+H2O2 groups, and there are three different zinc sources [zinc oxide nanoparticle (nano-ZnO), zinc oxide (ZnO), and zinc sulfate (ZnSO4)] and three concentrations (normal = 25 μM, medium = 50 μM, and high = 100 μM) used in this article. In the present study, we found the striking cytotoxicity of H2O2 higher than 200 μM on cell vitality, LDH activity, and apoptosis percentage in the cells using five different concentrations (50, 100, 200, 400, and 800 μM) of H2O2 for 4 h. Moreover, we observed that cell vitality was increased, LDH activity and apoptotic percentage were decreased, and gene expression level of Bax and caspase-3 and -9 was markedly reduced, while gene expression level of Bcl-2 and ratio of Bcl-2/Bax were increased in normal concentration groups of nano-ZnO and ZnSO4 compared with H2O2 group, but no significant difference was observed in caspase-8 gene expression. Furthermore, medium or, more intensely, high concentrations of nano-ZnO and ZnSO4 enhanced H2O2-induced cell apoptosis. Compared with nano-ZnO and ZnSO4, ZnO showed weakest protective effect on H2O2-induced apoptosis at normal concentration and was less toxic to cells at high level. Taken together, we proposed that preventive and protective effects of zinc on H2O2-induced cell apoptosis varied in IEC-6 cells with its chemical forms and concentrations, and maybe for the first time, we suggested that nano-ZnO have a protective effect on H2O2-induced cell apoptosis in IEC-6 cells.  相似文献   
6.

Mutagenesis via treatment of seeds with chemical mutagens such as ethyl methanesulfonate (EMS) has been widely used for crop improvement. However, this approach is not suitable for some crop species such as clonally propagated crops and allogamous perennial plants characteristically with high levels of genome heterozygosity and a long life cycle. Here, we report direct treatment of in vitro-induced peach shoot tip tissues with EMS for generation of mutations in peach, a perennial, woody fruit tree. We optimized EMS dosage and exposure time and found that treatment of the explants with 0.2 % EMS for 16 h was optimal for generation of genetic variations. So far we have generated nearly 2000 peach seedlings. Typical EMS-induced phenotypic variations were present in the seedlings. Next generation sequencing and subsequent data analyses were performed to monitor the efficiency of mutagenesis. The mutation rate was estimated to be one mutation per 150 kilobase pairs in the mutagenized population, suggesting effectiveness of this method in inducing mutagenesis in peach. Taken together, our data open an avenue for the generation of mutant populations suitable for crop improvement in allogamous perennial plants including fruit trees and clonally propagated plants.

  相似文献   
7.
Bread wheat (hexaploid AABBDD genome; 16 billion basepairs) is a genetically complex, self-pollinating plant with bisexual flowers that produce short-lived pollen. Very little is known about the molecular biology of its gametophyte development despite a longstanding interest in hybrid seeds. We present here a comprehensive characterization of three apparently homeologous genes (TAA1a, TAA1b and TAA1c) and demonstrate their anther-specific biochemical function. These eight-exon genes, found at only one copy per haploid complement in this large genome, express specifically within the sporophytic tapetum cells. The presence of TAA1 mRNA and protein was evident only at specific stages of pollen development as the microspore wall thickened during the progression of free microspores into vacuolated-microspores. This temporal regulation matched the assembly of wall-impregnated sporopollenin, a phenylpropanoid-lipid polymer containing very long chain fatty alcohols (VLCFAlc), described in the literature. Our results establish that sporophytic genes contribute to the production of fatty alcohols: Transgenic expression of TAA1 afforded production of long/VLCFAlc in tobacco seeds (18 : 1; 20 : 1; 22 : 1; 24 : 0; 26 : 0) and in Escherichia coli (14 : 0; 16 : 0; 18 : 1), suggesting biochemical versatility of TAA1 with respect to cellular milieu and substrate spectrum. Pollen walls additionally contain fatty alcohols in the form of wax esters and other lipids, and some of these lipids are known to play a role in the highly specific sexual interactions at the pollen-pistil interface. This study provides a handle to study these and to manipulate pollen traits, and, furthermore, to understand the molecular biology of fatty alcohol metabolism in general.  相似文献   
8.
Bovine seminal plasma contains a group of similar proteins, namely BSP-A1, BSP-A2, BSP-A3, and BSP-30-kDa (collectively called BSP proteins), and they are secreted by the seminal vesicles. In our study, we purified the BSP-A1/-A2 through affinity chromatography and found for the first time that BSP-A1/-A2 can inhibit the activity of protein kinase C (PKC) and tyrosine protein kinase (TPK). The inhibition was dose dependent. When the PKC and TPK activities are expressed as the logarithm of percentage activity taking the activity in the absence of the BSP-A1/-A2 as 100%, there is a linear relationship between the their activities and the dose of BSP-A1/-A2.  相似文献   
9.
药源植物盾叶薯蓣甾体皂苷及皂苷元的研究进展   总被引:5,自引:0,他引:5  
盾叶薯蓣是重要的甾体激素类药源植物,其根茎中薯蓣皂苷元含量居薯蓣属植物之冠,为我国的特有种。为了寻找高含量的资源、筛选新的生理活性成分,多年来我国学者做了大量的研究工作。主要概括了盾叶薯蓣的资源分布、薯蓣皂苷元的提取工艺、化学成分、药理、含量测定等方面的研究。  相似文献   
10.
A novel chimeric high-molecular-weight (HMW) glutenin subunit gene from a new common wheat line W958 (2n = 6x = 42) was isolated and characterized. SDS–PAGE analysis revealed that this glutenin subunit has similar electrophoretic mobility to 1Dx5, so it was designated 1Dx5′. Genomic DNA from W958 was amplified and a 2,505-bp fragment was obtained. The 1Dx5′ subunit showed a chimeric primary structure of 1Dx5 and 1Dx2, with the 1Dx5 sequence in the 5′ and middle repetitive regions and the 1Dx2 sequence in the repetitive domain and 3′ region. MALDI-TOF-MS analysis demonstrated that 1Dx5′ had a molecular weight of 86815.1 Da, close to that of an x-type glutenin subunit. Secondary structure analysis showed that this subunit had six helixes and one strand, including four helixes in the repetitive domain which could enhance the dough properties. Additionally, the promoter of 1Dx5′ was obtained and showed the same sequence as 1Dx5 or 1Dx2 except for a few base conversions. The promoter analysis indicated that the cis-acting regulatory elements of 1Dx5′ were the same as those of 1Dx5 and/or 1Dx2. Previously, we have demonstrated that this novel glutenin subunit is associated with good bread-making quality and comprises a very large proportion of the F2 segregation population. Consequently, we suggest that the amino acid residue composition and the secondary structure of the subunit may contribute to the bread-making quality. In summary, the novel 1Dx5′ gene could have greater potential in wheat quality improvement.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号