首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, the effect of aucubin on H2O2-induced apoptosis was studied by using a rat pheochromocytoma (PC12) cell line. We have analyzed the apoptosis of H2O2-induced PC12 cells, H2O2-induced apoptosis appeared to correlate with lower Bcl-2 expression, higher Bax expression and sequential activation of caspase-3 leading to cleavage of poly-ADP-ribose polymerase (PARP). Aucubin not only inhibited lower Bcl-2 expression, high Bax expression, but also modulated caspase-3 activation, PARP cleavage, and eventually protected against H2O2-induced apoptosis. These results indicated that aucubin can obstruct H2O2-induced apoptosis by regulating of the expression of Bcl-2 and Bax, as well as suppression of caspases cascade activation.  相似文献   

2.
To verify the antioxidative role of SelW in oxidant-induced chicken splenic lymphocyte, in this report, the influence of selenite supplementation and SelW gene silence on H2O2-mediated cell viability and cell apoptosis in cultured splenic lymphocyte derived from spleen of chicken were examined. The cultured cells were treated with sodium selenite and H2O2, or knocked down SelW with small interfering RNAs (siRNAs). The lymphocytes were examined for cell viability, cell apoptosis and mRNA expression levels of SelW and apoptosis-related genes (Bcl-2, Bax, Bak-1, caspase-3 and p53). The results show that the mRNA expression of SelW were effectively increased after treatment with sodium selenite, and H2O2-induced cell apoptosis was significantly decreased and cell viability was significantly increased. 20 μM H2O2 was found to induce cell apoptosis and decrease cell viability, which was alleviated obviously when cells were pretreated with sodium selenite before exposure to 20 μM H2O2. Meanwhile, H2O2 induced a significantly up-regulation of the Bax/Bcl-2 ratio, Bax, Bak-1, caspase-3 and p53 and down-regulation of Bcl-2 (P < 0.05). When lymphocytes were pretreated with Se before treated with H2O2, the Bax/Bcl-2 ratio and mRNA expression of those genes were significantly decreased, and Bcl-2 was increased (P < 0.05). SelW siRNA-transfected cells were more sensitive to the oxidative stress induced by treatment of H2O2 than control cells. Silencing of the lymphocyte SelW gene decreased their cell viability, and increased their apoptosis rate and susceptibility to H2O2. Silencing of SelW significantly up-regulated the Bax/Bcl-2 ratio, Bax, Bak-1, caspase-3 and p53 and down-regulated Bcl-2 (P < 0.05). The present study demonstrates that SelW plays an important role in protection of splenic lymphocyte of birds from oxidative stress.  相似文献   

3.
In order to investigate the mechanism of apoptosis in rat intestinal epithelial cells (IEC-6) induced by hydrogen peroxide (H2O2), IEC-6 cells were subjected to 20 μmol/L H2O2 and cell proliferation activity was determined using 3-(4,5-dimethyl-2-yl)-2,5-diphenyltetrazolium bromide. Cell morphology was observed by microscopy and cell apoptosis was detected by acridine orange and ethidium bromide staining and the portion of apoptotic cells was measured by flow cytometry. Genes and proteins related to cell apoptosis were detected by RT-PCR and Western blotting, and the mitochondrial membrane potential was evaluated by fluorescence probes. Results: Significant morphology damage was caused by exposure to H2O2, and results showed that ROS generation significantly increased (P < 0.01). The activity of superoxide dismutase decreased significantly (P < 0.05), malondialdehyde content increased (P < 0.05), and expression of both catalase and glutathione peroxidase decreased significantly (P < 0.05) in the H2O2 treatment group. Mitochondrion membrane potential was reduced, cytochrome released into the cytoplasm and caspase-9 and caspase-3 were significantly increased (P < 0.01) after treatment with H2O2. Moreover, the ratio of Bax/Bcl-2 and apoptosis were significantly increased (P < 0.01) in the H2O2 group. In conclusion, the present study indicated that the mitochondrial pathway plays a vital role in H2O2 induced IEC-6 cell apoptosis.  相似文献   

4.
Our previous studies showed that ginsenoside-Rd, a purified component from Panax notoginseng, inhibited cell proliferation and reversed basilar artery remodeling. The aim of this study was to investigate whether ginsenoside- Rd influences H2O2-induced apoptosis in basilar artery smooth muscle cells (BASMCs). The results showed that ginsenoside-Rd significantly potentiated H2O2-induced cell death and cell apoptosis. This resulted in a concentration-dependent reduction of the cell viability. Ginsenoside-Rd further increased cytochrome C release and caspase-9/caspase-3 activations, and reduced the stability of mitochondrial membrane potential (MMP) and the ratio of Bcl-2/Bax. Cyclosporine A, an inhibitor of mitochondrial-permeability transition, inhibited alteration of mitochondrial permeability induced by H2O2 and reversed the effect of ginsenoside-Rd on MMP. Our data strongly suggest that ginsenoside-Rd potentiated H2O2-induced apoptosis of BASMCs through the mitochondria-dependent pathway.  相似文献   

5.
Oxidative stress is a major component of harmful cascades activated in neurodegenerative disorders. Here, we tried to elucidate the possible neuroprotective effect of Salvigenin, a natural polyphenolic compound, on oxidative stress-induced apoptosis and autophagy in human neuroblastoma SH-SY5Y cells. We measured cell viability by MTT test and found that 25?μM is the best protective concentration of Salvigenin. GSH and SOD assays suggested that Salvigenin activates antioxidant factors. At the same time, measurement of ER stress-associated proteins including calpain and caspase-12 showed the ability of Salvigenin to decrease ER stress. We found that Salvigenin could decrease the apoptotic factors. Salvigenin inhibited H2O2-induced caspase-3 which is a hallmark of apoptosis in addition to reducing Bax\Bcl-2 ratio by 1.45 fold. Additionally, Salvigenin increased the levels of autophagic factors. Our results showed an increase in LC3-II/LC3-I ratio, Atg7, and Atg12 in the presence of 25?μM of Salvigenin by about 1.28, 1.25, and 1.54 folds, respectively, compared to H2O2-treated cells. So it seems that H2O2 cytotoxicity mainly results from apoptosis. Besides, Salvigenin helps cells to survive by inhibiting apoptosis and enhancing autophagy that opens a new horizon for the future experiments.  相似文献   

6.
RVF (Arg-Val-Phe), a peptide derived from wheat germ, shows antioxidant properties. Here, the neuroprotective efficacies of RVF were investigated in human neuroblastoma cells (SH-SY5Y) that were pretreated with RVF (150–250 μM, 4 h) and exposed to H2O2 (200 μM). RVF increased viable cell numbers by 37 % and reduced the release of lactate dehydrogenase. Pretreatment with RVF also inhibited H2O2-induced accumulation of reactive oxygen species and maintained the mitochondrial transmembrane potential as well as preventing intracellular Ca2+ dysregulation during H2O2 exposure. Furthermore, pretreatment with RVF increased the Bcl-2/Bax ratio and blocked cleavage poly(ADP-ribose) polymerase by inhibiting caspase-3 activation, thus decreasing apoptosis.  相似文献   

7.
Oxidative stress has been shown to induce apoptosis in cancer cells. Therefore, one might suspect that antioxidants may inhibit reactive oxygen species (ROS) and prevent apoptosis of cancer cells. No study has been carried out so far to elucidate the effects of N-acetylcysteine (NAC) on bleomycin-induced apoptosis in human testicular cancer (NCCIT) cells. We investigated the molecular mechanisms of apoptosis induced by bleomycin and the effect of NAC in NCCIT cells. We compared the effects of bleomycin on apoptosis with H2O2 which directly produces ROS. Strong antioxidant NAC was evaluated alone and in combination with bleomycin or H2O2 in germ cell tumor-derived NCCIT cell line (embryonal carcinoma, being the nonseminomatous stem cell component). We determined the cytotoxic effect of bleomycin and H2O2 on NCCIT cells and measured apoptosis markers such as caspase-3, caspase-8, and caspase-9 activities and Bcl-2, Bax, and cytochrome c (Cyt-c) levels in NCCIT cells incubated with bleomycin, H2O2, and/or NAC. We found half of the lethal dose (LD50) of bleomycin on NCCIT cell viability as 120???g/ml after incubation for 72?h. Incubation with bleomycin (LD50) induced increases in caspase-3, caspase-8, and caspase-9 activities and Cyt-c and Bax protein levels and a decrease in Bcl-2 level. Co-incubation of NCCIT cells with bleomycin and 10?mM NAC abolished bleomycin-induced increases in caspase-3 and caspase-9 activities, Bax, and Cyt-c levels and bleomycin-induced decrease in Bcl-2 level. Our results indicate that bleomycin induces apoptosis in NICCT cells and that NAC diminishes bleomycin-induced apoptosis via inhibiting the mitochondrial pathway. We conclude that NAC has negative effects on bleomycin-induced apoptosis in NICCT cells and causes resistance to apoptosis, which is not a desirable effect in the fight against cancer.  相似文献   

8.
The current study was designed to elucidate the cytoprotective effects and possible mechanisms of torulene and torularhodin on hydrogen peroxide (H2O2)-induced oxidative stress damage in human prostate stromal cells (WPMY-1). After treated with H2O2, a notable decrease was appeared in cell viability, yet the decrease was attenuated when cells were pretreated with torulene and torularhodin (0.5–10?μM) as evaluated by WST-1 assay. Pretreatment with these two carotenoids significantly attenuated H2O2-induced apoptosis in WPMY-1 cells through the inhibition of intracellular reactive oxygen species (ROS) and malondialdehyde (MDA) overproduction, as well as the activation of the activities in catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px). Finally, pretreatment of cells with carotenoids resulted in the regulation of the mRNA and protein expression of Bcl-2 and Bax in H2O2-exposed prostate stromal cells. The present results indicate that both torulene and torularhodin can protect human prostate stromal cells from oxidative stress damage via Bcl-2/Bax mediated apoptosis.  相似文献   

9.
Testicular cancer is the most common cancer among young men of reproductive age. Bleomycin is a frequently used drug for the treatment of several malignancies and is part of the chemotherapy protocols in testicular cancer. Bleomycin causes an increase in oxidative stress which has been shown to induce apoptosis in cancer cells. Curcumin (diferuloylmethane), an active component of the spice turmeric, has attracted interest because of its anti-inflammatory and chemopreventive activities. However, no study has been carried out so far to elucidate its interaction with bleomycin in testicular cancer cells. In this study, we investigated the effects of curcumin and bleomycin on apoptosis signalling pathways and compared the effects of bleomycin with H2O2 which directly produces reactive oxygen species. We measured apoptosis markers such as caspase-3, caspase-8, and caspase-9 activities and Bcl-2, Bax, and Cyt-c levels in NCCIT cells incubated with curcumin (5 μM), bleomycin (120 μg/ml), bleomycin + curcumin, H2O2 (35 μM), and H2O2 + curcumin for 72 h. Curcumin, bleomycin, and H2O2 caused apoptosis indicated as increases in caspase-3, caspase-8, and caspase-9 activities and Bax and cytoplasmic Cyt-c levels and a decrease in Bcl-2 level. Concurrent use of curcumin with bleomycin decreased caspase activities and Bax and Cyt-c levels compared to their separate effects in NCCIT cells. Our findings suggest that concurrent use of curcumin during chemotherapy in testis cancer should be avoided due to the inhibitory effect of curcumin on bleomycin-induced apoptosis.  相似文献   

10.
We previously reported that fasudil mesylate (FM) improves neurological deficit and neuronal damage in rats with ischemia following middle cerebral artery occlusion and reperfusion in vivo. In this study, the properties of FM on hydrogen peroxide (H2O2)-induced oxidative stress insult in cultured PC12 cells as well as the underlying mechanisms were investigated in vitro. Pretreatment with FM (5, 10 μM) prior to H2O2 exposure significantly elevated cell viability, reduced cell apoptosis by MTT assay, LDH assay, Hoechst 33258 dye staining, and FM also decreased the accumulation of reactive oxygen species (ROS) by DCFH-DA staining and NBT test. Furthermore, FM also reversed the upregulation of Bax/Bcl-2 ratio, the downstream cascade following ROS. FM protected PC12 cells from oxidative stress insult via down-regulating the Bax/Bcl-2 ratio. These findings indicate that a direct effect of fasudil mesylate on PC12 cells may be partly responsible for its protective effect against oxidative stress injury.  相似文献   

11.
《Free radical research》2013,47(3):347-356
Abstract

Oxidative stress is induced by excess accumulation of reactive oxygen and nitrogen species (RONS). Astrocytes are metabolically active cells in the brain and understanding astrocytic responses to oxidative stress is essential to understand brain pathologies. In addition to direct oxidative stress, exogenous hydrogen peroxide (H2O2) can penetrate biological membranes and enhance formation of other RONS. The present study was carried out to examine the role of insulin in H2O2-induced oxidative stress in rat astrocytic cells. To measure changes in the viability of astrocytes at different concentrations of H2O2 for 3 h, a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT)-based assay was used and 500 μM H2O2 was selected to establish a model of H2O2-induced oxidative stress. Further assays showed that 3 h of 500 μM H2O2-induced significant changes in the levels of lactate dehydrogenase (LDH), reactive oxygen species (ROS) and calcium ion (Ca2+) in C6 cells, with insulin able to effectively diminish H2O2-induced oxidative damage to C6 cells. Western blotting studies showed that insulin treatment of astrocytes increased the levels of phosphorylated Akt and magnified the decrease in total Bcl-2 protein. The protective effect of insulin treatment on H2O2-induced oxidative stress in astrocytes by reducing apoptosis may relate to the PI3K/Akt pathway.  相似文献   

12.
Herein, we investigated the protective effect of Salvia sahendica against H2O2-induced cell death in rat pheochromocytoma (PC12) cells. Our data show that S. sahendica blocks apoptosis pathway by inhibition of cytochrome c release from mitochondria and leakage of calcium from endoplasmic reticulum. It also activates/inactivates two members of Bcl-2 family, Bax and Bcl-2. Bax inhibition and Bcl-2 activation suppress release of cytochrome c from mitochondria that prevents cleavage of caspase-3. Besides S. sahendica suppresses ER stress via attenuation of intracellular levels of calcium. Suppression of ER stress decreased calpain activation and subsequently cleavage of caspase-12. Altogether, these results indicate that S. sahendica protects PC12 cells treated with H2O2 via suppression of upstream factors of apoptosis pathway. While oxidative stress is an early event in Alzheimer disease, it seems that S. sahendica prevents deleterious effects of reactive oxygen species by stabilizing mitochondrial membranes and inhibiting ER stress.  相似文献   

13.
Insulin, a hypoglycemic hormone, has multiple functions in the brain. The aim of this study to identify the mechanisms of insulin in hydrogen peroxide (H2O2)-induced toxicity in the C6 glial cells. Cytotoxicity, lactate dehydrogenase, nitric oxide, reactive oxygen species and calcium ion, lipid peroxidation, protein oxidation and glutathione levels were determined. Signaling pathway molecules were assessed by western blotting and RT-PCR. The results showed that treatment with insulin reduced the cell death and cell membrane damages against H2O2-induced toxicity. Furthermore, insulin interfered H2O2-induced intracellular generation of reactive oxygen species and calcium-ion transport, apoptosis, including lipid and protein oxidation products. Cells treated with insulin reverted H2O2-induced suppression of reduced glutathione levels by blocking oxidized glutathione. Moreover, insulin treatment activates Akt, restores ERK1/2 and Bcl-2 by preventing Bax and Bax/Bcl-2 ratio. Our results suggest that treatment of insulin exerts potential role against 24?h of H2O2-induced toxicity in C6 cells.  相似文献   

14.
Cell damage and apoptosis induced by oxidative stress have been involved in various neurodegenerative diseases. This study aims to explore the neuro-protective effects of quercetin on PC12 cells apoptosis induced by hydrogen peroxide (H2O2) and the underlying mechanisms. The cell viability was detected, as well as the production of reactive oxygen species (ROS), lactate dehydrogenase (LDH) leakage, and the activities of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and malondialdehyde (MDA) of the cells in control, H2O2 and quercetin groups. It finally turned out that quercetin might protect PC12 cells against the negative effect of H2O2 by decreasing of LDH release, ROS concentration and MDA level and regaining the GSH-Px and SOD activities. To investigate the mechanism, LY294002 was introduced, the phosphatidylinositol-3-kinase (PI3K) inhibitor. Bax/Bcl-2 ratio and Akt phosphorylation (p-Akt) were examined by Western blot analysis. The data showed that LY294002 almost had the same effects with H2O2, which was also significantly reversed by quercetin could enhance Bax/Bcl-2 ratio and adjust the p-Akt expression, which indicated quercetin might protect PC12 cells against the negative effect of H2O2 via activating the PI3K/Akt signal pathway.  相似文献   

15.
The turning point between apoptosis and necrosis induced by hydrogen peroxide (H2O2) have been investigated using human T-lymphoma Jurkat cells. Cells treated with 50 μM H2O2 exhibited caspase-9 and caspase-3 activation, finally leading to apoptotic cell death. Treatment with 500 μM H2O2 did not exhibit caspase activation and changed the mode of death to necrosis. On the other hand, the release of cytochrome c from the mitochondria was observed under both conditions. Treatment with 500 μM H2O2, but not with 50 μM H2O2, caused a marked decrease in the intracellular ATP level; this is essential for apoptosome formation. H2O2-reducing enzymes such as cellular glutathione peroxidase (cGPx) and catalase, which are important for the activation of caspases, were active under the 500 μM H2O2 condition. Prevention of intracellular ATP loss, which did not influence cytochrome c release, significantly activated caspases, changing the mode of cell death from necrosis to apoptosis. These results suggest that ATP-dependent apoptosome formation determines whether H2O2-induced cell death is due to apoptosis or necrosis.  相似文献   

16.
ABSTRACT

Honokiol is one of the main active components of Magnolia officinalis, and has been demonstrated to have multiple pharmacological activities against a variety of diseases. Recently, this phenolic compound is known to have antioxidant activity, but its mechanism of action remains unclear. The purpose of the current study was to evaluate the preventive effects of honokiol against oxidative stress-induced DNA damage and apoptosis in C2C12 myoblasts. The present study found that honokiol inhibited hydrogen peroxide (H2O2)-induced DNA damage and mitochondrial dysfunction, while reducing reactive oxygen species (ROS) formation. The inhibitory effect of honokiol on H2O2-induced apoptosis was associated with the up-regulation of Bcl-2 and down-regulation of Bax, thus reducing the Bax/Bcl-2 ratio that in turn protected the activation of caspase-9 and -3, and inhibition of poly (ADP-ribose) polymerase cleavage, which was associated with the blocking of cytochrome c release to the cytoplasm. Collectively, these results demonstrate that honokiol defends C2C12 myoblasts against H2O2-induced DNA damage and apoptosis, at least in part, by preventing mitochondrial-dependent pathway through scavenging excessive ROS.  相似文献   

17.
It has been previously shown that Walker 256 tumor cells express a high content of the anti-apoptotic protein Bcl-2 which protects mitochondria against the damaging effects of Ca2+. In the present study, we analyze H2O2-induced apoptotic death in two different types of tumor cells: Walker 256 and SCC-25. Treatment with H2O2 (4mM) increased reactive oxygen species generation and the concentration of cytosolic free Ca2+. These alterations preceded apoptosis in both cell lines. In Walker cells, which show a high Bcl-2/Bax ratio, apoptosis was dependent on calcineurin activation and independent of changes in mitochondrial membrane potential (Δ < eqid1 > m), as well as cytochrome c release. In contrast, in SCC-25 cells, which show a lower Bcl-2/Bax ratio, apoptosis was preceded by a decrease in Δ < eqid2 > m, mitochondrial permeability transition, and cytochrome c release. Caspase-3 activation occurred in both cell lines. The data suggest that although the high Bcl-2/Bax ratio protected the mitochondria of Walker cells from oxidative stress, it was not sufficient to prevent apoptosis through calcineurin pathways.  相似文献   

18.
The purpose of our study was to investigate underlying basic mechanisms of hypothermia-induced cardioprotection during oxidative stress in a cardiomyocyte cell culture model. For hypothermic treatment we cooled H9c2 cardiomyocytes to 20 °C, maintained 20 min at 20 °C during which short-term oxidative damage was inflicted with 2 mM H2O2, followed by rewarming to 37 °C. Later on, we analyzed lactate dehydrogenase (LDH), caspase-3 cleavage, reactive oxygen species (ROS), mitochondrial activity, intracellular ATP production, cytoprotective signal molecules as well as DNA damage. Hypothermia decreased H2O2 damage in cardiomyocytes as demonstrated in a lower LDH release, less caspase-3 cleavage and less M30 CytoDeath staining. After rewarming H2O2 damaged cells demonstrated a significantly higher reduction rate of intracellular ROS compared to normothermic H2O2 damaged cardiomyocytes. This was in line with a significantly greater mitochondrial dehydrogenase activity and higher intracellular ATP content in cooled and rewarmed cells. Moreover, hypothermia preserved cell viability by up-regulation of the anti-apoptotic protein Bcl-2 and a reduction of p53 phosphorylation. DNA damage, proven by PARP-1 cleavage and H2AX phosphorylation, was significantly reduced by hypothermia. In conclusion, we could demonstrate that hypothermia protects cardiomyocytes during oxidative stress by preventing apoptosis via inhibiting mitochondrial dysfunction and DNA damage.  相似文献   

19.
Das A  Banik NL  Ray SK 《Neurochemical research》2007,32(11):1849-1856
Glioblastoma patients receive anti-inflammatory agent for alleviation of vasogenic edema and pain prior to surgery, radiotherapy, and chemotherapy. Oxidative stress is an important mechanism of action of some chemotherapeutic agents in the treatment of glioblastoma. So, we examined the modulatory effects of methylprednisolone (MP, a steroidal anti-inflammatory agent) and indomethacin (IM, a non-steroidal anti-inflammatory agent) on apoptosis in rat C6 glioblastoma cells following oxidative stress with hydrogen peroxide (H2O2). Exposure of C6 cells to 1 mM H2O2 for 24 h caused significant amounts of morphological and biochemical features of apoptosis. Expressions of Bax and Bcl-2 at mRNA and protein levels were altered resulting in an increase in Bax : Bcl-2 ratio in apoptotic cells, which also exhibited overexpression of 80 kDa calpain and an increase in calpain-cleaved 145 kDa α-spectrin breakdown product. Immunofluorescent and propidium iodide labeling detected caspase-3-p20 fragment in apoptotic cells, indicating activation of caspase-3 as well. Treatment of cells with 1 μM MP or 10 μM IM alone did not induce apoptosis. Pretreatment (1 h) with either 1 μM MP or 10 μM IM significantly inhibited H2O2 mediated apoptosis in C6 cells. Thus, pretreatment of glioblastoma with an anti-inflammatory agent, either steroidal or non-steroidal, may compromise the action of a chemotherapeutic agent that mediates therapeutic action via oxidative stress.  相似文献   

20.
Reactive oxygen species such as hydrogen peroxide (H2O2) are involved in many cellular processes that positively and negatively regulate cell fate. H2O2, acting as an intracellular messenger, activates phosphatidylinositol-3 kinase (PI3K) and its downstream target Akt, and promotes cell survival. The aim of the current study was to understand the mechanism by which PI3K/Akt signaling promotes survival in SH-SY5Y neuroblastoma cells. We demonstrate that PI3K/Akt mediates phosphorylation of the pro-apoptotic Bcl-2 family member Bax. This phosphorylation suppresses apoptosis and promotes cell survival. Increased survival in the presence of H2O2 was blocked by LY294002, an inhibitor of PI3K activation. LY294002 prevented Bax phosphorylation and resulted in Bax translocation to the mitochondria, cytochrome c release, caspase-3 activation, and cell death. Collectively, these findings reveal a mechanism by which H2O2-induced activation of PI3K/Akt influences post-translational modification of Bax and inactivates a key component of the cell death machinery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号