首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   788篇
  免费   90篇
  2021年   8篇
  2020年   6篇
  2018年   11篇
  2017年   8篇
  2016年   9篇
  2015年   10篇
  2014年   23篇
  2013年   26篇
  2012年   44篇
  2011年   36篇
  2010年   34篇
  2009年   20篇
  2008年   38篇
  2007年   26篇
  2006年   34篇
  2005年   18篇
  2004年   18篇
  2003年   31篇
  2002年   24篇
  2001年   29篇
  2000年   33篇
  1999年   16篇
  1998年   19篇
  1997年   10篇
  1996年   19篇
  1995年   14篇
  1994年   11篇
  1992年   19篇
  1991年   9篇
  1990年   15篇
  1989年   12篇
  1988年   13篇
  1987年   17篇
  1986年   12篇
  1985年   22篇
  1984年   10篇
  1983年   17篇
  1982年   14篇
  1981年   9篇
  1980年   6篇
  1977年   9篇
  1976年   8篇
  1975年   12篇
  1974年   10篇
  1973年   15篇
  1972年   13篇
  1970年   9篇
  1969年   6篇
  1968年   6篇
  1967年   9篇
排序方式: 共有878条查询结果,搜索用时 781 毫秒
81.
Although polymerases delta and epsilon are required for DNA replication in eukaryotic cells, whether each polymerase functions on a separate template strand remains an open question. To begin examining the relative intracellular roles of the two polymerases, we used a plasmid-borne yeast tRNA gene and yeast strains that are mutators due to the elimination of proofreading by DNA polymerases delta or epsilon. Inversion of the tRNA gene to change the sequence of the leading and lagging strand templates altered the specificities of both mutator polymerases, but in opposite directions. That is, the specificity of the polymerase delta mutator with the tRNA gene in one orientation bore similarities to the specificity of the polymerase epsilon mutator with the tRNA gene in the other orientation, and vice versa. We also obtained results consistent with gene orientation having a minor influence on mismatch correction of replication errors occurring in a wild-type strain. However, the data suggest that neither this effect nor differential replication fidelity was responsible for the mutational specificity changes observed in the proofreading-deficient mutants upon gene inversion. Collectively, the data argue that polymerases delta and epsilon each encounter a different template sequence upon inversion of the tRNA gene, and so replicate opposite strands at the plasmid DNA replication fork.  相似文献   
82.
Neural cell adhesion molecules composed of immunoglobulin and fibronectin type III-like domains have been implicated in cell adhesion, neurite outgrowth, and fasciculation. Axonin-1 and Ng cell adhesion molecule (NgCAM), two molecules with predominantly axonal expression exhibit homophilic interactions across the extracellular space (axonin- 1/axonin-1 and NgCAM/NgCAM) and a heterophilic interaction (axonin-1–NgCAM) that occurs exclusively in the plane of the same membrane (cis-interaction). Using domain deletion mutants we localized the NgCAM homophilic binding in the Ig domains 1-4 whereas heterophilic binding to axonin-1 was localized in the Ig domains 2-4 and the third FnIII domain. The NgCAM–NgCAM interaction could be established simultaneously with the axonin-1–NgCAM interaction. In contrast, the axonin-1–NgCAM interaction excluded axonin-1/axonin-1 binding. These results and the examination of the coclustering of axonin-1 and NgCAM at cell contacts, suggest that intercellular contact is mediated by a symmetric axonin-12/NgCAM2 tetramer, in which homophilic NgCAM binding across the extracellular space occurs simultaneously with a cis-heterophilic interaction of axonin-1 and NgCAM. The enhanced neurite fasciculation after overexpression of NgCAM by adenoviral vectors indicates that NgCAM is the limiting component for the formation of the axonin-12/NgCAM2 complexes and, thus, neurite fasciculation in DRG neurons.  相似文献   
83.
84.
Summary Thymidylate biosynthesis was inhibited in a haploid heterothallic strain of Saccharomyces cerevisiae. When the treated cells were mixed with a haploid strain of the same mating-type, there was an increase in the recovery of diploid colonies. Genetic and biochemical analyses demonstrated that the diploid clones arose as a consequence of induced mating-type interconversion.  相似文献   
85.
Dey M  Li X  Kunz RC  Ragsdale SW 《Biochemistry》2010,49(51):10902-10911
Methyl-coenzyme M reductase (MCR) from methanogenic archaea catalyzes the terminal step in methanogenesis using coenzyme B (CoBSH) as the two-electron donor to reduce methyl-coenzyme M (methyl-SCoM) to form methane and the heterodisulfide, CoBS-SCoM. The active site of MCR contains an essential redox-active nickel tetrapyrrole cofactor, coenzyme F(430), which is active in the Ni(I) state (MCR(red1)). Several catalytic mechanisms have been proposed for methane synthesis that mainly differ in whether an organometallic methyl-Ni(III) or a methyl radical is the first catalytic intermediate. A mechanism was recently proposed in which methyl-Ni(III) undergoes homolysis to generate a methyl radical (Li, X., Telser, J., Kunz, R. C., Hoffman, B. M., Gerfen, G., and Ragsdale, S. W. (2010) Biochemistry 49, 6866-6876). Discrimination among these mechanisms requires identification of the proposed intermediates, none of which have been observed with native substrates. Apparently, intermediates form and decay too rapidly to accumulate to detectible amounts during the reaction between methyl-SCoM and CoBSH. Here, we describe the reaction of methyl-SCoM with a substrate analogue (CoB(6)SH) in which the seven-carbon heptanoyl moiety of CoBSH has been replaced with a hexanoyl group. When MCR(red1) is reacted with methyl-SCoM and CoB(6)SH, methanogenesis occurs 1000-fold more slowly than with CoBSH. By transient kinetic methods, we observe decay of the active Ni(I) state coupled to formation and subsequent decay of alkyl-Ni(III) and organic radical intermediates at catalytically competent rates. The kinetic data also revealed substrate-triggered conformational changes in active Ni(I)-MCR(red1). Electron paramagnetic resonance (EPR) studies coupled with isotope labeling experiments demonstrate that the radical intermediate is not tyrosine-based. These observations provide support for a mechanism for MCR that involves methyl-Ni(III) and an organic radical as catalytic intermediates. Thus, the present study provides important mechanistic insights into the mechanism of this key enzyme that is central to biological methane formation.  相似文献   
86.
The precise subcellular localization of the components of the cyclic AMP (cAMP) signaling pathways is a crucial aspect of eukaryotic intracellular signaling. In the human pathogen Trypanosoma brucei, the strict control of cAMP levels by cAMP-specific phosphodiesterases is essential for parasite survival, both in cell culture and in the infected host. Among the five cyclic nucleotide phosphodiesterases identified in this organism, two closely related isoenzymes, T. brucei PDEB1 (TbrPDEB1) (PDEB1) and TbrPDEB2 (PDEB2) are predominantly responsible for the maintenance of cAMP levels. Despite their close sequence similarity, they are distinctly localized in the cell. PDEB1 is mostly located in the flagellum, where it forms an integral part of the flagellar skeleton. PDEB2 is mainly located in the cell body, and only a minor part of the protein localizes to the flagellum. The current study, using transfection of procyclic trypanosomes with green fluorescent protein (GFP) reporters, demonstrates that the N termini of the two enzymes are essential for determining their final subcellular localization. The first 70 amino acids of PDEB1 are sufficient to specifically direct a GFP reporter to the flagellum and to lead to its detergent-resistant integration into the flagellar skeleton. In contrast, the analogous region of PDEB2 causes the GFP reporter to reside predominantly in the cell body. Mutagenesis of selected residues in the N-terminal region of PDEB2 demonstrated that single amino acid changes are sufficient to redirect the reporter from a cell body location to stable integration into the flagellar skeleton.In eukaryotes, the ubiquitous second messenger cyclic AMP (cAMP) is generated from ATP by membrane-integral or by cytoplasmic, CO2-regulated cyclases (35, 44). The cAMP signal is processed by a small group of receiver proteins, including the regulatory subunit of protein kinase A (28), cAMP-gated ion channels (4), and the guanine-nucleotide-exchange proteins EPAC1 and EPAC2 (39). The cAMP signal is terminated by the action of a family of cyclic nucleotide-specific phosphodiesterases (PDEs) (9). This paradigm is rather straightforward, involves a limited number of players, and is generally well understood, at least in mammalian cells. However, much less is known about how individual cAMP signals are temporally and spatially controlled. Since most eukaryotic adenylyl cyclases are integral membrane proteins, often restricted to specific membrane subdomains (10), cAMP signaling is usually initiated at the cell membrane (40). However, diffusion of cAMP away from its site of generation is rapid, with diffusion coefficients being about 400 μm2/s (8, 15, 29), translating into diffusion velocities of 30 to 40 μm/s. As a consequence, the signal would reach the center of the cell with a diameter of 3 μm within less than 50 ms and would rapidly saturate the entire cell. While regulation through fluctuating cellular levels of cAMP represents a valid paradigm of cAMP signaling, it has become clear that other, more localized modes of cAMP signaling must also exist. Several groups have shown that the cAMP response of a given cell can differ depending on what set of receptors activates the cyclase response (14, 30, 41, 42). Similarly, the cAMP response of endothelial cells depends on the subcellular site where the cAMP is produced. They tighten their barrier function when cAMP is produced by membrane-bound adenylyl cyclases but become more permeable when cAMP is produced in the cytoplasm (17, 45). The distinct subcellular localization of cAMP signals was experimentally demonstrated using an array of techniques (29, 40, 55, 56).Physically tethered PDEs might serve to confine newly synthesized cAMP to defined microdomains. Only cAMP-binding proteins that are localized within or extend into such microdomains would be able to receive the cAMP signal (17, 49). cAMP concentrations within such domains might rise and fall rapidly, reaching peak concentrations much more rapidly and locally far beyond the steady-state cAMP levels measured in whole-cell extracts. Such spatially organized, tethered PDEs can generate local sinks into which cAMP disappears (1, 23). This paradigm would allow the simultaneous presence of numerous local cAMP concentration gradients within a single cell, allowing great flexibility in signal generation and intracellular signal transmission. This concept is based on the distinct subcellular localization and physical association of PDEs with subcellular structures and on the existence of localized subcellular cAMP pools, for which there is extensive experimental support (3, 5, 13, 50, 52). Interestingly, PDEs localized in different subcellular regions may still be able to compensate for each other. Ablation of the cilium-specific PDE1C from the olfactory neurons in the mouse did not prolong response termination, as long as the cytoplasmic PDE4 in the cell body was still present (11).The unicellular eukaryote Trypanosoma brucei is the causative agent of human sleeping sickness in sub-Saharan Africa. It belongs to the large order of the kinetoplastida, which includes many medically and economically important pathogens of humans, their livestock, and their crops worldwide (27). Trypanosomes are very small cells (about 15 by 3 μm in diameter) that carry a single flagellum (10 by 0.5 μm). The volume of a procyclic trypanosome of strain 427 is (9.6 ± 0.8) × 10−14 liter (Markus Engstler, personal communication), with the flagellum representing about 15% of this. A signaling threshold concentration of 1 μM cAMP corresponds to just about 30,000 molecules of cAMP per cell. Given a diffusion coefficient of 400 μm2/s (29), unrestricted diffusion of cAMP would swamp the cell within 50 ms. Obviously, temporal and spatial control of cAMP signaling is crucial for T. brucei. Strategically located, physically tethered PDEs might thus play an important role in the architecture of the cAMP signaling pathways in T. brucei.The genomes of T. brucei and of other kinetoplastids, such as T. vivax, T. cruzi, Leishmania major, L. infantum, and L. braziliensis, all code for the same set of five cyclic nucleotide-specific PDEs (25, 53). In T. brucei, the genes for T. brucei PDEB1 (TbrPDEB1; subsequently termed PDEB1) and TbrPDEB2 (PDEB2) are tandemly arranged on chromosome 9 and code for two very similar cAMP-specific PDEs, each with two GAF (mammalian cyclic GMP-dependent PDEs, Anabaena adenylyl cyclases, Escherichia coli FhlA) domains (21) in their N-terminal regions (38, 57). These two PDEs were also studied experimentally in T. cruzi (12) and L. major (24, 52), and orthologues are present in all kinetoplastid genomes available so far. Despite their high overall sequence similarity, PDEB1 and PDEB2 exhibit distinct subcellular localizations (31). PDEB1 is predominantly found in the flagellum, where it is stably associated with cytoskeletal components that are resistant to detergent extraction. In contrast, PDEB2 is mostly localized in the cell body, from where it is fully extractable by nonionic detergents. However, a minor fraction of PDEB2 also associates with the flagellar skeleton in a Triton-resistant manner, most likely through interaction with PDEB1. Earlier work has shown that both PDEB1and PDEB2 are essential enzymes in bloodstream-form T. brucei (31), while TbPDEA, TbPDEC, and TbPDED play minor roles (20; S. Kunz, unpublished data).  相似文献   
87.
Necrobacillosis due to Fusobacterium necrophorum is an uncommon anaerobic infection. It has a wide range of presentations and commonly presents as Lemierre's syndrome. We present a case of necrobacillosis defined by F. necrophorum bacteremia with epidural and pararectal fluid collection without evidence of internal jugular vein thrombophlebitis.  相似文献   
88.
Roost switching is a common occurrence in bats, yet the causes and consequences of such behavior are poorly understood. In this study we explore the ecological correlates of roost fidelity in the tent‐making bat Artibeus watsoni, particularly focusing on the effect of sex, reproductive status, and roost availability using a three‐factor general linear model (GLM). We estimated roost fidelity of radio‐tracked individuals and found that the GLM was significant (R2 = 0.72, F10,34 = 8.91, p < 0.001). Significant interaction terms were observed for relative roost availability and sex (F4,34 = 16.96, p < 0.001), and relative roost availability and reproductive status (F6,34 = 7.62, p < 0.001), indicating that variation in roost fidelity among males and females, and among individuals under different breeding conditions, depended on relative roost availability at the site where they were radio‐tracked. Individuals in areas of high roost availability exhibited lower roost fidelity than those sampled in areas of lower roost availability. Females exhibited less roost fidelity than males for all roost availability categories, but the difference between males and females was only significant at high roost availability. The general pattern of decreased roost fidelity as roost availability increased was also prevalent among individuals in different breeding conditions. Additionally, satellite males exhibited higher roost fidelity than resident males in areas of low roost availability, and lactating females had higher roost fidelity than non‐breeding females in areas of medium roost availability. Our study thus demonstrates that sex, reproductive status, and roost availability all affect roost fidelity in the tent‐making bat A. watsoni, and also suggests that roost availability is the most important factor influencing roost fidelity in this bat, providing the first quantitative evidence that roost fidelity is correlated with roost abundance in a single species.  相似文献   
89.
alpha-Dystroglycan (alpha-DG) is an important cellular receptor for extracellular matrix (ECM) proteins as well as the Old World arenaviruses lymphocytic choriomeningitis virus (LCMV) and the human pathogenic Lassa fever virus (LFV). Specific O-glycosylation of alpha-DG is critical for its function as receptor for ECM proteins and arenaviruses. Here, we investigated the impact of arenavirus infection on alpha-DG expression. Infection with an immunosuppressive LCMV isolate caused a marked reduction in expression of functional alpha-DG without affecting biosynthesis of DG core protein or global cell surface glycoprotein expression. The effect was caused by the viral glycoprotein (GP), and it critically depended on alpha-DG binding affinity and GP maturation. An equivalent effect was observed with LFVGP. Viral GP was found to associate with a complex between DG and the glycosyltransferase LARGE in the Golgi. Overexpression of LARGE restored functional alpha-DG expression in infected cells. We provide evidence that virus-induced down-modulation of functional alpha-DG perturbs DG-mediated assembly of laminin at the cell surface, affecting normal cell-matrix interactions.  相似文献   
90.
Wang H  Yan Z  Geng J  Kunz S  Seebeck T  Ke H 《Molecular microbiology》2007,66(4):1029-1038
Human leishmaniasis is a major public health problem in many countries, but chemotherapy is in an unsatisfactory state. Leishmania major phosphodiesterases (LmjPDEs) have been shown to play important roles in cell proliferation and apoptosis of the parasite. Thus LmjPDE inhibitors may potentially represent a novel class of drugs for the treatment of leishmaniasis. Reported here are the kinetic characterization of the LmjPDEB1 catalytic domain and its crystal structure as a complex with 3-isobutyl-1-methylxanthine (IBMX) at 1.55 A resolution. The structure of LmjPDEB1 is similar to that of human PDEs. IBMX stacks against the conserved phenylalanine and forms a hydrogen bond with the invariant glutamine, in a pattern common to most inhibitors bound to human PDEs. However, an extensive structural comparison reveals subtle, but significant differences between the active sites of LmjPDEB1 and human PDEs. In addition, a pocket next to the inhibitor binding site is found to be unique to LmjPDEB1. This pocket is isolated by two gating residues in human PDE families, but constitutes a natural expansion of the inhibitor binding pocket in LmjPDEB1. The structure particularity might be useful for the development of parasite-selective inhibitors for the treatment of leishmaniasis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号