首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   348篇
  免费   92篇
  2024年   2篇
  2023年   10篇
  2022年   15篇
  2021年   28篇
  2020年   29篇
  2019年   25篇
  2018年   24篇
  2017年   24篇
  2016年   18篇
  2015年   17篇
  2014年   51篇
  2013年   31篇
  2012年   16篇
  2011年   30篇
  2010年   9篇
  2009年   13篇
  2008年   7篇
  2007年   28篇
  2006年   13篇
  2005年   7篇
  2004年   10篇
  2003年   6篇
  2002年   3篇
  1999年   4篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   3篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1980年   1篇
排序方式: 共有440条查询结果,搜索用时 15 毫秒
71.
Bacterial cellulose (BC) was obtained by static cultivation using commercial BC gel from scoby. BC membranes (oven dried and freeze‐dried) were swelled with 8% NaOH, in the absence and in the presence of ultrasound (US), for 30, 60, and 90 min. The influence of swelling conditions on both physico‐chemical properties and molecules entrapment was evaluated. Considering the highest levels of entrapment, an optimum swelling procedure was established: 8% NaOH for 30 min at room temperature in the presence of US. Native and PEGylated laccase from Myceliophthora thermophila was immobilized on BC membranes and a different catalytic behaviour was observed after immobilization. Native laccase presented activity values similar to published reports (5–7 U/gBC) after immobilization whereas PEGylated enzymes showed much lower activity (1–2 U/gBC). BC swelled membranes are presented herein as a potential support for the preparation of immobilized enzymes for industrial applications, like phenolics polymerization.  相似文献   
72.
目的:探讨聚桂醇在治疗下肢大隐静脉曲张中的应用价值。方法:回顾性分析2013年9月-2015年9月医院确诊的下肢大隐静脉曲张患者75例(75条患肢)病例资料,根据治疗方案分为两组,33例(33条患肢)超声引导下注射聚桂醇泡沫硬化剂作为聚桂醇组,42例(42条患肢)行大隐静脉高位结扎+剥脱术作为手术组,记录手术时间、术中出血量、下床活动时间、住院时间、治疗费用及术后并发症发生率,门诊随访术后6、12个月,记录复发率。结果:聚桂醇组手术时间、下床活动时间均短于手术组,术中出血量、住院费用少于手术组,差异有统计学意义(P0.05);聚桂醇组皮下血肿、皮肤麻木感发生率明显低于手术组,差异有统计学意义(P0.05);聚桂醇组12个月复发率为12.12%低于手术组的33.33%,差异有统计学意义(P0.05)。结论:聚桂醇泡沫硬化剂注射是治疗下肢大隐静脉曲张的可选疗法。  相似文献   
73.
In multicellular organisms, cell behavior is dictated by interactions with the extracellular matrix. Consequences of matrix-engagement range from regulation of cell migration and proliferation, to secretion and even differentiation. The signals underlying each of these complex processes arise from the molecular interactions of extracellular matrix receptors on the surface of the cell. Integrins are the prototypic receptors and provide a mechanical link between extracellular matrix and the cytoskeleton, as well as initiating some of the adhesion-dependent signaling cascades. However, it is becoming increasingly apparent that additional transmembrane receptors function alongside the integrins to regulate both the integrin itself and signals downstream. The most elegant of these examples is the transmembrane proteoglycan, syndecan-4, which cooperates with α(5)β(1)-integrin during adhesion to fibronectin. In vivo models demonstrate the importance of syndecan-4 signaling, as syndecan-4-knockout mice exhibit healing retardation due to inefficient fibroblast migration. In wild-type animals, migration of fibroblasts toward a wound is triggered by the appearance of fibronectin that leaks from damaged capillaries and is deposited by macrophages in injured tissue. Therefore there is great interest in discovering strategies that enhance fibronectin-dependent signaling and could accelerate repair processes. The integrin-mediated and syndecan-4-mediated components of fibronectin-dependent signaling can be separated by stimulating cells with recombinant fibronectin fragments. Although integrin engagement is essential for cell adhesion, certain fibronectin-dependent signals are regulated by syndecan-4. Syndecan-4 activates the Rac1 protrusive signal, causes integrin redistribution, triggers recruitment of cytoskeletal molecules, such as vinculin, to focal adhesions, and thereby induces directional migration. We have looked for alternative strategies for activating such signals and found that low-intensity pulsed ultrasound (LIPUS) can mimic the effects of syndecan-4 engagement. In this protocol we describe the method by which 30 mW/cm(2), 1.5 MHz ultrasound, pulsed at 1 kHz (Fig. 1) can be applied to fibroblasts in culture (Fig. 2) to induce Rac1 activation and focal adhesion formation. Ultrasound stimulation is applied for a maximum of 20 minutes, as this combination of parameters has been found to be most efficacious for acceleration of clinical fracture repair. The method uses recombinant fibronectin fragments to engage α(5)β(1)-integrin, without engagement of syndecan-4, and requires inhibition of protein synthesis by cycloheximide to block deposition of additional matrix by the fibroblasts. The positive effect of ultrasound on repair mechanisms is well documented, and by understanding the molecular effect of ultrasound in culture we should be able to refine the therapeutic technique to improve clinical outcomes.  相似文献   
74.
Ultrasound effect on physical properties of corn starch   总被引:2,自引:0,他引:2  
High power ultrasound (HPU) represents a non-thermal processing method that has been rapidly researched and used in the last 10 years. The application of power ultrasound offers the opportunity to modify and improve some technologically important compounds which are often used in food products. One of them is starch. The aim of this research was to examine the effect of the high power ultrasound of 24 kHz frequency on rheological and some physical properties of corn starch. Various ultrasound treatments were used; an ultrasound probe set with different intensities (34, 55, 73 W cm−2) and treatment times (15 and 30 min) and ultrasound bath of 2 W cm−2 intensity and treatment times (15 and 30 min). Rheological parameters, turbidity and swelling power of corn starch suspensions were determined for native and ultrasonically treated corn starch suspensions. Differential scanning calorimetry was used in order to examine the pasting properties of corn starch. The results have shown that the ultrasound treatment of corn starch distorts the crystalline region in starch granules. The results of differential scanning calorimetry measurements have shown a decrease in enthalpy of gelatinization. A significant decrease in consistency coefficient (k) has also been observed. The consistency coefficient decreases stepwise jointly with the increasing ultrasound power. The increase in the swelling power is associated with water absorption capacity and corn starch granules solubility, respectively.  相似文献   
75.
Cytoskeleton and specially actin filaments are responsible for mechanical modulation of cellular behavior. These structures could be fluidized in response to transient mechanical cues. Ultrasound devices have been widely used in medicine which their generated ultrasonic waves could disrupt/fluidize actin filaments in cytoskeleton and thus could affect cellular organization. Present research aims at revealing the mechanism of fluidization caused by ultrasound induced strains. First, a numerical simulation was performed to reveal the effect of oscillating ultrasonic pressure on induced deformation in the cell with respect to different cell geometries and exposure conditions. The model revealed that higher pressure and frequencies induce higher levels of strain in the cell. The results also showed that spread cells are more exposed to cytomechanical remodeling due to higher level of ultrasound induced deformations but also the effect of harmonic excitation decreases with spreading. Furthermore, strain values found to be less in the nucleus comparing the value in the cytoplasm, but still these strains can affect the behavior of the cell through mechanotransduction mechanisms. Then, different experimental ultrasound protocols were used to evaluate their effects on cell viability and actin cytoskeleton distribution. Results of Live/Dead assay indicated that high pressure and duration of the exposure had negative effects on the viability of C2C12 cells, while the viability ratio still remained above 85%. In addition, actin fluorescent staining showed that high levels of filament disruption could occur with increasing the pressure. The results of this study shed light on cellular response to mechanical stimuli applied by ultrasonic waves.  相似文献   
76.
Acoustic-based imaging modalities (e.g. ultrasonography and photoacoustic imaging) have emerged as powerful approaches to noninvasively visualize the interior of the body due to their biocompatibility and the ease of sound transmission in tissue. These technologies have recently been augmented with an array of chemical tools that enable the study and modulation of the tumor microenvironment at the molecular level. In addition, the application of ultrasound and ultrasound-responsive materials has been used for drug delivery with high spatiotemporal control. In this review, we highlight recent advances (in the last 2–3 years) in acoustic-based chemical tools and technologies suitable for furthering our understanding of molecular events in complex tumor microenvironments.  相似文献   
77.
Ankle foot orthoses (AFOs) are designed to improve gait for individuals with neuromuscular conditions and have also been used to reduce energy costs of walking for unimpaired individuals. AFOs influence joint motion and metabolic cost, but how they impact muscle function remains unclear. This study investigated the impact of different stiffness AFOs on medial gastrocnemius muscle (MG) and Achilles tendon (AT) function during two walking speeds. We performed gait analyses for eight unimpaired individuals. Each individual walked at slow and very slow speeds with a 3D printed AFO with no resistance (free hinge condition) and four levels of ankle dorsiflexion stiffness: 0.25 Nm/°, 1 Nm/°, 2 Nm/°, and 3.7 Nm/°. Motion capture, ultrasound, and musculoskeletal modeling were used to quantify MG and AT lengths with each AFO condition. Increasing AFO stiffness increased peak AFO dorsiflexion moment with decreased peak knee extension and peak ankle dorsiflexion angles. Overall musculotendon length and peak AT length decreased, while peak MG length increased with increasing AFO stiffness. Peak MG activity, length, and velocity significantly decreased with slower walking speed. This study provides experimental evidence of the impact of AFO stiffness and walking speed on joint kinematics and musculotendon function. These methods can provide insight to improve AFO designs and optimize musculotendon function for rehabilitation, performance, or other goals.  相似文献   
78.
In this study, we have designed developed the microbubbles (MBs) coated Cu-Se nanoparticles (MBs@Cu-Se NPs) was efficiently synthesized and combined with the Ultrasound for potential anticancer effects in ovarian carcinoma cells. The fabricated nanoparticles are perceived as the well-known spherical size by SEM and TEM analysis. The hydrodynamic parameters of the MBs@Cu-Se NPs confirm via DLA analysis. Further, in vitro cancer potential of the Cu-Se, MBs@Cu-Se NPs and MBs@Cu-Se NPs with Ultrasound efficiently kills the ovarian cancer cells (A2780 and CisRA2780) and reduced the cell viability in a dose-dependent manner. The MBs@Cu-Se NPs with Ultrasound displayed remarkably higher amounts of apoptosis of the ovarian cancers, which was confirmed by the various biochemical assays (AO-EB), and Hoechst-33,258 by nuclear staining. Additionally, we examined the apoptosis mechanism through the flow cytometry technique. The results reveal that the MBs@Cu-Se NPs with Ultrasound significantly induce apoptosis in both cancer cells. These results suggest that the in vitro cytotoxicity potential of MBs@Cu-Se NPs with Ultrasound combination therapy against ovarian carcinoma. Overall, new approaches of combination therapy of MBs@Cu-Se NPs with Ultrasound could be a promising alternative strategy and efficient chemotherapy as well as radiotherapy.  相似文献   
79.
80.
High-frequency ultrasound (HFUS) is widely employed as a non-invasive method for imaging internal anatomic structures in experimental small animal systems. HFUS has the ability to detect structures as small as 30 µm, a property that has been utilized for visualizing superficial lymph nodes in rodents in brightness (B)-mode. Combining power Doppler with B-mode imaging allows for measuring circulatory blood flow within lymph nodes and other organs. While HFUS has been utilized for lymph node imaging in a number of mouse  model systems, a detailed protocol describing HFUS imaging and characterization of the cervical lymph nodes in mice has not been reported. Here, we show that HFUS can be adapted to detect and characterize cervical lymph nodes in mice. Combined B-mode and power Doppler imaging can be used to detect increases in blood flow in immunologically-enlarged cervical nodes. We also describe the use of B-mode imaging to conduct fine needle biopsies of cervical lymph nodes to retrieve lymph tissue for histological  analysis. Finally, software-aided steps are described to calculate changes in lymph node volume and to visualize changes in lymph node morphology following image reconstruction. The ability to visually monitor changes in cervical lymph node biology over time provides a simple and powerful technique for the non-invasive monitoring of cervical lymph node alterations in preclinical mouse models of oral cavity disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号