首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71353篇
  免费   5000篇
  国内免费   2614篇
  2023年   1139篇
  2022年   1060篇
  2021年   2359篇
  2020年   2349篇
  2019年   3262篇
  2018年   2835篇
  2017年   2022篇
  2016年   2010篇
  2015年   2513篇
  2014年   4741篇
  2013年   5894篇
  2012年   3653篇
  2011年   4691篇
  2010年   3572篇
  2009年   3868篇
  2008年   3940篇
  2007年   3967篇
  2006年   3518篇
  2005年   3053篇
  2004年   2703篇
  2003年   2146篇
  2002年   1927篇
  2001年   1228篇
  2000年   951篇
  1999年   972篇
  1998年   973篇
  1997年   638篇
  1996年   586篇
  1995年   612篇
  1994年   565篇
  1993年   431篇
  1992年   431篇
  1991年   356篇
  1990年   293篇
  1989年   241篇
  1988年   211篇
  1987年   184篇
  1986年   161篇
  1985年   272篇
  1984年   455篇
  1983年   334篇
  1982年   347篇
  1981年   264篇
  1980年   201篇
  1979年   194篇
  1978年   172篇
  1977年   143篇
  1976年   115篇
  1975年   108篇
  1973年   104篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
A tip-focused Ca^2+ gradient is tightly coupled to polarized pollen tube growth, and tip-localized influxes of extracellular Ca^2+ are required for this process. However the molecular identity and regulation of the potential Ca^2+ channels remains elusive. The present study has implicated CNGC18 (cyclic nucleotide-gated channel 18) in polarized pollen tube growth, because its overexpression induced wider and shorter pollen tubes. Moreover, CNGC18 overexpression induced depolarization of pollen tube growth was suppressed by lower extracellular calcium ([Ca^2+]ex). CNGC18-yellow fluorescence protein (YFP) was preferentially localized to the apparent post-Golgi vesicles and the plasma membrane (PM) in the apex of pollen tubes. The PM localization was affected by tip-localized ROP1 signaling. Expression of wild type ROP1 or an active form of ROP1 enhanced CNGC18-YFP localization to the apical region of the PM, whereas expression of RopGAP1 (a ROP1 deactivator) blocked the PM localization. These results support a role for PM-Iocalized CNGC18 in the regulation of polarized pollen tube growth through its potential function in the modulation of calcium influxes.  相似文献   
42.
The 231-residue capsid (CA) protein of human immunodeficiency virus type 1 (HIV-1) spontaneously self-assembles into tubes with a hexagonal lattice that is believed to mimic the surface lattice of conical capsid cores within intact virions. We report the results of solid-state nuclear magnetic resonance (NMR) measurements on HIV-1 CA tubes that provide new information regarding changes in molecular structure that accompany CA self-assembly, local dynamics within CA tubes, and possible mechanisms for the generation of lattice curvature. This information is contained in site-specific assignments of signals in two- and three-dimensional solid-state NMR spectra, conformation-dependent 15N and 13C NMR chemical shifts, detection of highly dynamic residues under solution NMR conditions, measurements of local variations in transverse spin relaxation rates of amide 1H nuclei, and quantitative measurements of site-specific 15N–15N dipole–dipole couplings. Our data show that most of the CA sequence is conformationally ordered and relatively rigid in tubular assemblies and that structures of the N-terminal domain (NTD) and the C-terminal domain (CTD) observed in solution are largely retained. However, specific segments, including the N-terminal β-hairpin, the cyclophilin A binding loop, the inter-domain linker, segments involved in intermolecular NTD–CTD interactions, and the C-terminal tail, have substantial static or dynamical disorder in tubular assemblies. Other segments, including the 310-helical segment in CTD, undergo clear conformational changes. Structural variations associated with curvature of the CA lattice appear to be localized in the inter-domain linker and intermolecular NTD–CTD interface, while structural variations within NTD hexamers, around local 3-fold symmetry axes, and in CTD–CTD dimerization interfaces are less significant.  相似文献   
43.
The ability of a number of nitrogen-containing compounds that simultaneously carry the adamantane and monoterpene moieties to inhibit Tdp1, an important enzyme of the DNA repair system, is studied. Inhibition of this enzyme has the potential to overcome chemotherapeutic resistance of some tumor types. Compound (+)-3c synthesized from 1-aminoadamantane and (+)-myrtenal, and compound 4a produced from 2-aminoadamantane and citronellal were found to be most potent as they inhibited Tdp1 with IC50 values of 6 and 3.5 µM, respectively. These compounds proved to have low cytotoxicity in colon HCT-116 and lung A-549 human tumor cell lines (CC50 > 50 µM). It was demonstrated that compound 4a at 10 µM enhanced cytotoxicity of topotecan, a topoisomerase 1 poison in clinical use, against HCT-116 more than fivefold and to a lesser extent of 1.5 increase in potency for A-549.  相似文献   
44.
The kidneys are exposed to hypoxic conditions during development. Hypoxia-inducible factor (HIF), an important mediator of the response to hypoxia, is believed to have an important role in development. However, the relationship between HIF and branching morphogenesis has not been elucidated clearly.  相似文献   
45.
RegB is involved in the control of the phage T4 life cycle. It inactivates the phage early mRNAs when their translation is no more required. We determined its structure and identified residues involved in substrate binding. For this, all backbone and 90% of side-chain resonance frequencies were assigned.  相似文献   
46.
皮肤作为人体最大器官覆盖于全身,能阻挡有害物质的侵入,保护人体内环境稳态,参与人体代谢过程。皮肤损伤、炎症和纤维化等,都会导致皮肤屏障功能的减退,影响正常的生命活动。溶血磷脂酸(lysophosphatidic acid,LPA)是十分活跃的磷脂信号分子,参与多种生理和病理生理过程。LPA是维持体内平衡所必需的生物活性脂质介质,在皮肤中通过不同的信号通路发挥多功能磷脂信使作用。本文综述了皮肤中溶血磷脂酸受体(lysophosphatidic acid receptor,LPA1-6)及其细胞信号通路的作用及机制,综述了LPA在皮肤创面愈合、皮肤瘢痕、皮肤黑色素瘤、硬皮病、皮肤瘙痒、过敏性皮炎、皮肤屏障、皮肤疼痛,皮肤毛发生长中的作用及分子机制,有助于了解LPA在皮肤中的生理和病理生理作用。深入研究LPA的作用机制将有助于挖掘其在皮肤治疗中的作用,开发以LPA为靶点的药物。  相似文献   
47.
The antiretroviral activity of azulene derivatives was detected for the first time. A series of eighteen diversely substituted azulenes was synthesized and tested in vitro using HIV-1 based virus-like particles (VLPs) and infectious HIV-1 virus in U2OS and TZM-bl cell lines. Among the compounds tested, the 2-hydroxyazulenes demonstrated the most significant activity by inhibiting HIV-1 replication with IC50 of 2–10 and 8–20 μM for the VLPs and the infectious virus, respectively. These results indicate that azulene derivatives may be potentially useful candidates for the development of antiretroviral agents.  相似文献   
48.
49.
Aims/hypothesisGlucagon-like peptide-1 (GLP-1) is an incretin hormone derived from proglucagon, which is released from intestinal L-cells and increases insulin secretion in a glucose dependent manner. GPR119 is a lipid derivative receptor present in L-cells, believed to play a role in the detection of dietary fat. This study aimed to characterize the responses of primary murine L-cells to GPR119 agonism and assess the importance of GPR119 for the detection of ingested lipid.MethodsGLP-1 secretion was measured from murine primary cell cultures stimulated with a panel of GPR119 ligands. Plasma GLP-1 levels were measured in mice lacking GPR119 in proglucagon-expressing cells and controls after lipid gavage. Intracellular cAMP responses to GPR119 agonists were measured in single primary L-cells using transgenic mice expressing a cAMP FRET sensor driven by the proglucagon promoter.ResultsL-cell specific knockout of GPR119 dramatically decreased plasma GLP-1 levels after a lipid gavage. GPR119 ligands triggered GLP-1 secretion in a GPR119 dependent manner in primary epithelial cultures from the colon, but were less effective in the upper small intestine. GPR119 agonists elevated cAMP in ∼70% of colonic L-cells and 50% of small intestinal L-cells.Conclusions/interpretationGPR119 ligands strongly enhanced GLP-1 release from colonic cultures, reflecting the high proportion of colonic L-cells that exhibited cAMP responses to GPR119 agonists. Less GPR119-dependence could be demonstrated in the upper small intestine. In vivo, GPR119 in L-cells plays a key role in oral lipid-triggered GLP-1 secretion.  相似文献   
50.
Copper is an essential yet toxic metal ion. To satisfy cellular requirements, while, at the same time, minimizing toxicity, complex systems of copper trafficking have evolved in all cell types. The best conserved and most widely distributed of these involve Atx1-like chaperones and P1B-type ATPase transporters. Here, we discuss current understanding of how these chaperones bind Cu(I) and transfer it to the Atx1-like N-terminal domains of their cognate transporter.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号