首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
H Li  Y Lin  R M Heath  M X Zhu    Z Yang 《The Plant cell》1999,11(9):1731-1742
We have shown that Rop1At, a pollen-specific Rop GTPase that is a member of the Rho family of small GTP binding proteins, acts as a key molecular switch controlling tip growth in Arabidopsis pollen tubes. Pollen-specific expression of constitutively active rop1at mutants induced isotropic growth of pollen tubes. Overexpression of wild-type Arabidopsis Rop1At led to ectopic accumulation of Rop1At in the plasma membrane at the tip and caused depolarization of pollen tube growth, which was less severe than that induced by the constitutively active rop1at. These results indicate that both Rop1At signaling and polar localization are critical for controlling the site of tip growth. Dominant negative rop1at mutants or antisense rop1at RNA inhibited tube growth at 0.5 mM extracellular Ca(2+), but growth inhibition was reversed by higher extracellular Ca(2+). Injection of anti-Rop antibodies disrupted the tip-focused intracellular Ca(2+) gradient known to be crucial for tip growth. These studies provide strong evidence for a Rop GTPase-dependent tip growth pathway that couples the control of growth sites with the rate of tip growth through the regulation of tip-localized extracellular Ca(2+) influxes and formation of the tip-high intracellular Ca(2+) gradient in pollen tubes.  相似文献   

2.
Oscillation regulates a wide variety of processes ranging from chemotaxis in Dictyostelium through segmentation in vertebrate development to circadian rhythms. Most studies on the molecular mechanisms underlying oscillation have focused on processes requiring a rhythmic change in gene expression, which usually exhibit a periodicity of >10 min. Mechanisms that control oscillation with shorter periods (<10 min), presumably independent of gene expression changes, are poorly understood. Oscillatory pollen tube tip growth provides an excellent model to investigate such mechanisms. It is well established that ROP1, a Rho-like GTPase from plants, plays an essential role in polarized tip growth in pollen tubes. In this article, we demonstrate that tip-localized ROP1 GTPase activity oscillates in the same frequency with growth oscillation, and leads growth both spatially and temporally. Tip growth requires the coordinate action of two ROP1 downstream pathways that promote the accumulation of tip-localized Ca2+ and actin microfilaments (F-actin), respectively. We show that the ROP1 activity oscillates in a similar phase with the apical F-actin but apparently ahead of tip-localized Ca2+. Furthermore, our observations support the hypothesis that the oscillation of tip-localized ROP activity and ROP-dependent tip growth in pollen tubes is modulated by the two temporally coordinated downstream pathways, an early F-actin assembly pathway and a delayed Ca2+ gradient-forming pathway. To our knowledge, our report is the first to demonstrate the oscillation of Rho GTPase signaling, which may be a common mechanism underlying the oscillation of actin-dependent processes such as polar growth, cell movement, and chemotaxis.  相似文献   

3.
Wang YF  Fan LM  Zhang WZ  Zhang W  Wu WH 《Plant physiology》2004,136(4):3892-3904
Cytosolic free Ca2+ and actin microfilaments play crucial roles in regulation of pollen germination and tube growth. The focus of this study is to test the hypothesis that Ca2+ channels, as well as channel-mediated Ca2+ influxes across the plasma membrane (PM) of pollen and pollen tubes, are regulated by actin microfilaments and that cytoplasmic Ca2+ in pollen and pollen tubes is consequently regulated. In vitro Arabidopsis (Arabidopsis thaliana) pollen germination and tube growth were significantly inhibited by Ca2+ channel blockers La3+ or Gd3+ and F-actin depolymerization regents. The inhibitory effect of cytochalasin D (CD) or cytochalasin B (CB) on pollen germination and tube growth was enhanced by increasing external Ca2+. Ca2+ fluorescence imaging showed that addition of actin depolymerization reagents significantly increased cytoplasmic Ca2+ levels in pollen protoplasts and pollen tubes, and that cytoplasmic Ca2+ increase induced by CD or CB was abolished by addition of Ca2+ channel blockers. By using patch-clamp techniques, we identified the hyperpolarization-activated inward Ca2+ currents across the PM of Arabidopsis pollen protoplasts. The activity of Ca2+-permeable channels was stimulated by CB or CD, but not by phalloidin. However, preincubation of the pollen protoplasts with phalloidin abolished the effects of CD or CB on the channel activity. The presented results demonstrate that the Ca2+-permeable channels exist in Arabidopsis pollen and pollen tube PMs, and that dynamic actin microfilaments regulate Ca2+ channel activity and may consequently regulate cytoplasmic Ca2+.  相似文献   

4.
Calcium, an ubiquitous second messenger, plays an essential and versatile role in cellular signaling. The diverse function of calcium signals is achieved by an excess of calcium sensors. Plants possess large numbers of calcium sensors, most of which have not been functionally characterized. To identify physiologically relevant calcium sensors in a specific cell type, we conducted a genome-wide functional survey in pollen tubes, for which spatiotemporal calcium signals are well-characterized and required for polarized tip growth. Pollen-specific members of calmodulin (CaM), CaM-like (CML), calcium-dependent protein kinase (CDPK) and calcineurin B-like protein (CBL) families were tagged with green fluorescence protein (GFP) and their localization patterns and overexpression phenotypes were characterized in tobacco pollen tubes. We found that several fusion proteins showed distinct overexpression phenotypes and subcellular localization patterns. CDPK24-GFP was localized to the vegetative nucleus and the generative cell/sperms. CDPK32-GFP caused severe growth depolarization. CBL2-GFP and CBL3-GFP exhibited dynamic patterns of subcellular localization, including several endomembrane compartments, the apical plasma membrane (PM), and cytoskeleton-like structures in pollen tubes. Their overexpression also inhibited pollen tube elongation and induced growth depolarization. These putative calcium sensors are excellent candidates for the calcium sensors responsible for the regulation of calcium homeostasis and calcium-dependent tip growth and growth oscillation in pollen tubes.  相似文献   

5.
Tip-localized reactive oxygen species (ROS) were detected in growing pollen tubes by chloromethyl dichlorodihydrofluorescein diacetate oxidation, while tip-localized extracellular superoxide production was detected by nitroblue tetrazolium (NBT) reduction. To investigate the origin of the ROS we cloned a fragment of pollen specific tobacco NADPH oxidase (NOX) closely related to a pollen specific NOX from Arabidopsis. Transfection of tobacco pollen tubes with NOX-specific antisense oligodeoxynucleotides (ODNs) resulted in decreased amount of NtNOX mRNA, lower NOX activity and pollen tube growth inhibition. The ROS scavengers and the NOX inhibitor diphenylene iodonium chloride (DPI) inhibited growth and ROS formation in tobacco pollen tube cultures. Exogenous hydrogen peroxide (H2O2) rescued the growth inhibition caused by NOX antisense ODNs. Exogenous CaCl2 increased NBT reduction at the pollen tube tip, suggesting that Ca2+ increases the activity of pollen NOX in vivo. The results show that tip-localized ROS produced by a NOX enzyme is needed to sustain the normal rate of pollen tube growth and that this is likely to be a general mechanism in the control of tip growth of polarized plant cells.  相似文献   

6.
Fu Y  Wu G  Yang Z 《The Journal of cell biology》2001,152(5):1019-1032
Tip-growing pollen tubes provide a useful model system to study polar growth. Although roles for tip-focused calcium gradient and tip-localized Rho-family GTPase in pollen tube growth is established, the existence and function of tip-localized F-actin have been controversial. Using the green fluorescent protein-tagged actin-binding domain of mouse talin, we found a dynamic form of tip-localized F-actin in tobacco pollen tubes, termed short actin bundles (SABs). The dynamics of SABs during polar growth in pollen tubes is regulated by Rop1At, a Rop GTPase belonging to the Rho family. When overexpressed, Rop1At transformed SAB into a network of fine filaments and induced a transverse actin band behind the tip, leading to depolarized growth. These changes were due to ectopic Rop1At localization to the apical region of the plasma membrane and were suppressed by guanine dissociation inhibitor overexpression, which removed ectopically localized Rop1At. Rop GTPase-activating protein (RopGAP1) overexpression, or Latrunculin B treatments, also recovered normal actin organization and tip growth in Rop1At-overexpressing tubes. Moreover, overexpression of RopGAP1 alone disrupted SABs and inhibited growth. Finally, SAB oscillates and appears at the tip before growth. Together, these results indicate that the dynamics of tip actin are essential for tip growth and provide the first direct evidence to link Rho GTPase to actin organization in controlling cell polarity and polar growth in plants.  相似文献   

7.
Tip growth in neuronal cells, plant cells, and fungal hyphae is known to require tip-localized Rho GTPase, calcium, and filamentous actin (F-actin), but how they interact with each other is unclear. The pollen tube is an exciting model to study spatiotemporal regulation of tip growth and F-actin dynamics. An Arabidopsis thaliana Rho family GTPase, ROP1, controls pollen tube growth by regulating apical F-actin dynamics. This paper shows that ROP1 activates two counteracting pathways involving the direct targets of tip-localized ROP1: RIC3 and RIC4. RIC4 promotes F-actin assembly, whereas RIC3 activates Ca(2+) signaling that leads to F-actin disassembly. Overproduction or depletion of either RIC4 or RIC3 causes tip growth defects that are rescued by overproduction or depletion of RIC3 or RIC4, respectively. Thus, ROP1 controls actin dynamics and tip growth through a check and balance between the two pathways. The dual and antagonistic roles of this GTPase may provide a unifying mechanism by which Rho modulates various processes dependent on actin dynamics in eukaryotic cells.  相似文献   

8.
A Moutinho  AJ Trewavas    R Malho 《The Plant cell》1998,10(9):1499-1510
Pollen tube reorientation is a dynamic cellular event that is crucial for successful fertilization. We have shown previously that pollen tube orientation is regulated by cytosolic free calcium ([Ca2+]c). In this paper, we studied the activity of a Ca2+-dependent protein kinase during reorientation. The kinase activity was assayed in living cells by using confocal ratio imaging of BODIPY FL bisindolylmaleimide. We found that growing pollen tubes exhibited higher protein kinase activity in the apical region, whereas nongrowing cells showed uniform distribution. Modification of growth direction by diffusion of inhibitors/activators from a micropipette showed the spatial redistribution of kinase activity to predict the new growth orientation. Localized increases in [Ca2+]c induced by photolysis of caged Ca2+ that led to reorientation also increased kinase activity. Molecular and immunological assays suggest that this kinase may show some functional homology with protein kinase C. We suggest that the tip-localized gradient of kinase activity promotes Ca2+-mediated exocytosis and may act to regulate Ca2+ channel activity.  相似文献   

9.
Calcium Channel Activity during Pollen Tube Growth and Reorientation   总被引:22,自引:4,他引:18       下载免费PDF全文
We have shown previously that the inhibition of pollen tube growth and its subsequent reorientation in Agapanthus umbellatus are preceded by an increase in cytosolic free calcium ([Ca2+]c), suggesting a role for Ca2+ in signaling these processes. In this study, a novel procedure was used to measure Ca2+ channel activity in living pollen tubes subjected to various growth reorienting treatments (electrical fields and ionophoretic microinjection). The method involves adding extracellular Mn2+ to quench the fluorescence of intracellular Indo-1 at its ca2+-insensitive wavelength (isosbestic point). The spatial and temporal kinetics of Ca2+ channel activity correlated well with measurements of [Ca2+]c dynamics obtained by fluorescence ratio imaging of Indo-1. Tip-focused gradients in Ca2+ channel activity and [Ca2+]c were observed and quantified in growing pollen tubes and in swollen pollen tubes before reoriented growth. In nongrowing pollen tubes, Ca2+ channel activity was very low and [Ca2+]c gradients were absent. Measurements of membrane potential indicated that the growth reorienting treatments induced a depolarization of the plasma membrane, suggesting that voltage-gated Ca2+ channels might be activated.  相似文献   

10.
In flowering plants, the process of pollen germination and tube growth is required for successful fertilization. A pollen receptor kinase from tomato (Solanum lycopersicum), LePRK2, has been implicated in signaling during pollen germination and tube growth as well as in mediating pollen (tube)-pistil communication. Here we show that reduced expression of LePRK2 affects four aspects of pollen germination and tube growth. First, the percentage of pollen that germinates is reduced, and the time window for competence to germinate is also shorter. Second, the pollen tube growth rate is reduced both in vitro and in the pistil. Third, tip-localized superoxide production by pollen tubes cannot be increased by exogenous calcium ions. Fourth, pollen tubes have defects in responses to style extract component (STIL), an extracellular growth-promoting signal from the pistil. Pollen tubes transiently overexpressing LePRK2-fluorescent protein fusions had slightly wider tips, whereas pollen tubes coexpressing LePRK2 and its cytoplasmic partner protein KPP (a Rop-GEF) had much wider tips. Together these results show that LePRK2 positively regulates pollen germination and tube growth and is involved in transducing responses to extracellular growth-promoting signals.  相似文献   

11.
Pollen tubes expand by tip growth and extend directionally toward the ovule to deliver sperms during pollination. They provide an excellent model system for the study of cell polarity control and tip growth, because they grow into uniformly shaped cylindrical cells in culture. Mechanisms underlying tip growth are poorly understood in pollen tubes. It has been demonstrated that ROP1, a pollen-specific member of the plant-specific Rop subfamily of Rho GTPases, is a central regulator of pollen tube tip growth. Recent studies in pollen from Arabidopsis and other species have revealed a ROP-mediated signalling network that is localized to the apical PM region of pollen tubes. The results provide evidence that the localization of this signalling network establishes the site for tip growth and the localized activation of this signalling network regulates the dynamics of tip F-actin. These results have shown that the ROP1-mediated dynamics of tip F-actin is a key cellular mechanism behind tip growth in pollen tubes. Current understanding of the molecular basis for the regulation of the tip actin dynamics will be discussed.  相似文献   

12.
Calcium is a key regulator of pollen tube growth, but little is known concerning the downstream components of the signaling pathways involved. We identified two pollen-expressed calmodulin-like domain protein kinases from Petunia inflata, CALMODULIN-LIKE DOMAIN PROTEIN KINASE1 (Pi CDPK1) and Pi CDPK2. Transient overexpression or expression of catalytically modified Pi CDPK1 disrupted pollen tube growth polarity, whereas expression of Pi CDPK2 constructs inhibited tube growth but not polarity. Pi CDPK1 exhibited plasma membrane localization most likely mediated by acylation, and we present evidence that suggests this localization is critical to the biological function of this kinase. Pi CDPK2 substantially localized to as yet unidentified internal membrane compartments, and this localization was again, at least partially, mediated by acylation. In contrast with Pi CDPK1, altering the localization of Pi CDPK2 did not noticeably alter the effect of overexpressing this isoform on pollen tube growth. Ca(2+) requirements for Pi CDPK1 activation correlated closely with Ca(2+) concentrations measured in the growth zone at the pollen tube apex. Interestingly, loss of polarity associated with overexpression of Pi CDPK1 was associated with elevated cytosolic Ca(2+) throughout the bulging tube tip, suggesting that Pi CDPK1 may participate in maintaining Ca(2+) homeostasis. These results are discussed in relation to previous models for Ca(2+) regulation of pollen tube growth.  相似文献   

13.
Chen KM  Wu GL  Wang YH  Tian CT  Samaj J  Baluska F  Lin JX 《Protoplasma》2008,233(1-2):39-49
Two potent drugs, neomycin and TMB-8, which can block intracellular calcium release, were used to investigate their influence on pollen tube growth and cell wall deposition in Picea wilsonii. Apart from inhibiting pollen germination and pollen tube growth, the two drugs largely influenced tube morphology. The drugs not only obviously disturbed the generation and maintenance of the tip-localized Ca(2+) gradient but also led to a heavy accumulation of callose at the tip region of P. wilsonii pollen tubes. Fourier transform infrared (FTIR) spectroscopy analysis showed that the deposition of cell wall components, such as carboxylic acid, pectins, and other polysaccharides, in pollen tubes was changed by the two drugs. The results obtained from immunolabeling with different pectin and arabinogalactan protein antibodies agreed well with the FTIR results and further demonstrated that the generation and maintenance of the gradient of cross-linked pectins, as well as the proportional distribution of arabinogalactan proteins in tube cell walls, are essential for pollen tube growth. These results strongly suggest that intracellular calcium release mediates the processes of pollen germination and pollen tube growth in P. wilsonii and its inhibition can lead to abnormal growth by disturbing the deposition of cell wall components in pollen tube tips.  相似文献   

14.
Wu Y  Xu X  Li S  Liu T  Ma L  Shang Z 《The New phytologist》2007,176(3):550-559
The role of heterotrimeric G proteins in pollen germination and tube growth was investigated using Arabidopsis thaliana plants in which the gene (GPA) encoding the G-protein a subunit (Galpha) was null or overexpressed. Pollen germination, free cytosolic calcium concentration ([Ca(2+)](cyt)) and Ca(2+) channel activity in the plasma membrane (PM) of pollen cells were investigated. Results showed that, compared with pollen grains of the wild type (ecotype Wassilewskija, ws), in vitro germinated pollen of Galpha null mutants (gpa1-1 and gpa1-2) had lower germination percentages and shorter pollen tubes, while pollen from Galpha overexpression lines (wGalpha and cGalpha) had higher germination percentages and longer pollen tubes. Compared with ws pollen cells, [Ca(2+)](cyt) was lower in gpa1-1 and gpa1-2 and higher in wGalpha and cGalpha. In whole-cell patch clamp recordings, a hyperpolarization-activated Ca(2+)-permeable conductance was identified in the PM of pollen protoplasts. The conductance was suppressed by trivalent cations but insensitive to organic blockers; its permeability to divalent cations was Ba(2+) > Ca(2+) > Mg(2+) > Sr(2+) > Mn(2+). The activity of the Ca(2+)-permeable channel conductance was down-regulated in pollen protoplasts of gpa1-1 and gpa1-2, and up-regulated in wGalpha and cGalpha. The results suggest that Galpha may participate in pollen germination through modulation of the hyperpolarization-activated Ca(2+) channel in the PM of pollen cells.  相似文献   

15.
Lin Y  Yang Z 《The Plant cell》1997,9(9):1647-1659
Microinjection of anti-Rop1Ps antibodies was used to assess the function of a tip-localized Rho-type GTPase, Rop, in controlling pollen tube growth. Injected antibodies induced sustained growth arrest within 1 to 2 min after injection but did not affect cytoplasmic streaming. Coinjection with Rop rescued antibody-induced growth inhibition, indicating that injected antibodies specifically block the activity of Rop GTPases. Antibody-induced inhibition was significantly enhanced in the presence of a lower threshold of extracellular [Ca2+] or a subinhibitory dosage of caffeine. In contrast, injection of the C3 toxin, which inactivates a different Rho-type GTPase, arrested tube elongation 10 to 20 min after injection. C3-induced growth arrest was accompanied by the cessation of cytoplasmic streaming. These data suggest that Rho-type GTPases play a pivotal role in the control of pollen tube elongation. We propose that Rop may regulate a Ca2+-dependent pathway involved in vesicle docking/fusion, whereas a C3-sensitive Rho GTPase may mediate cytoplasmic streaming.  相似文献   

16.
A signaling role for cytosolic free Ca2+ ([Ca2+]i) in regulating Papaver rhoeas pollen tube growth during the self-incompatibility response has been demonstrated previously. In this article, we investigate the involvement of the phosphoinositide signal transduction pathway in Ca2+-mediated pollen tube inhibition. We demonstrate that P. rhoeas pollen tubes have a Ca2+-dependent polyphosphoinositide-specific phospholipase C activity that is inhibited by neomycin. [Ca2+]i imaging after photolysis of caged inositol (1,4,5)-trisphosphate (Ins[1,4,5]P3) in pollen tubes demonstrated that Ins(1,4,5)P3 could induce Ca2+ release, which was inhibited by heparin and neomycin. Mastoparan, which stimulated Ins(1,4,5)P3 production, also induced a rapid increase in Ca2+, which was inhibited by neomycin. These data provide direct evidence for the involvement of a functional phosphoinositide signal-transducing system in the regulation of pollen tube growth. We suggest that the observed Ca2+ increases are mediated, at least in part, by Ins(1,4,5)P3-induced Ca2+ release. Furthermore, we provide data suggesting that Ca2+ waves, which have not previously been reported in plant cells, can be induced in pollen tubes.  相似文献   

17.
We have measured the distribution of cytoplasmic calcium in lily pollen tubes by microinjecting them with indo-1 and performing fluorescence ratio image analysis on them. All of the 16 tubes that were growing at the time of the calcium measurements showed a gradient of [Ca2+]i in the tip region, with Ca2+ being 1.25 to 3.32 times higher at the distal end in 15 cases and more than 5 times higher in one case. The extent of the gradient ranged from 22 to 65 microns. Most of the 15 nongrowing tubes either had no gradient or had lower Ca2+ in the tip region. While we have confirmed a previous report that lily pollen tubes can be loaded with the membrane-permeable acetoxymethyl ester forms of calcium indicators, the dyes loaded in this way are visibly partitioned into organelles and this method of loading is, therefore, not useful for the measurement of [Ca2+]i. Iontophoresis of the dye free acids into tubes produces a more uniform and diffuse fluorescence which does not appear to partition into organelles. Indo-1 remains in the pollen tubes longer than fura-2. The correlation between growth and the [Ca2+]i gradient in the apical portion of the pollen tube is discussed in relation to previous reports that have suggested that such a gradient should exist during polarized growth.  相似文献   

18.
Root hairs and pollen tubes show strictly polar cell expansion called tip growth. Recent studies of tip growth in root hairs and pollen tubes have revealed that small GTPases of the Rab, Arf and Rho/Rac families, along with their regulatory proteins, are essential for spatio-temporal regulation of vesicular trafficking, cytoskeleton organization and signalling. ROP/RAC GTPases are involved in a multiplicity of functions including the regulation of cytoskeleton organization, calcium signalling and endocytosis in pollen tubes and root hairs. One of the most exciting recent discoveries is the preferential localization of vesicles of the trans-Golgi network (TGN), defined by specific RAB GTPases, in the apical "clear zone" and the definition of TGN as a bona fide organelle involved in both polarized secretion and endocytosis. The TGN is thought to serve the function of an early endosome in plants because it is involved in early endocytosis and rapid vesicular recycling of the plasma membrane in root epidermal cells.  相似文献   

19.
Malho R  Trewavas AJ 《The Plant cell》1996,8(11):1935-1949
To reach the ovule, pollen tubes must undergo many changes in growth direction. We have shown in previous work that elevation of cytosolic free calcium ([Ca2+]c) can manipulate orientation in growing pollen tubes, but our results suggested that [Ca2+]c changes either in the tip or in more distal regions might regulate the critical orienting mechanism. To identify the spatial location of the orienting motor, we combined the techniques of ion imaging with confocal microscopy and localized photoactivation of loaded caged Ca2+ (nitr-5) and diazo-2 (a caged Ca2+ chelator) to manipulate [Ca2+]c in different pollen tube domains. We found that increasing [Ca2+]c on one side of the pollen tube apex induced reorientation of the growth axis toward that side. Similarly, a decrease in [Ca2+]c promoted bending toward the opposite side. These effects could be mimicked by imposing localized external gradients of an ionophore (A23187) or a Ca2+ channel blocker (GdCl3); the pollen tubes bend toward the highest concentration of A23187 and away from GdCl3. Manipulation of [Ca2+]c in regions farther back from the apical zone also induced changes in growth direction, but the new orientation was at random. We observed communication of these distal events to the tip through a slow-moving [Ca2+]c wave. These data show that localized changes of [Ca2+]c in the tip, which could result from asymmetric channel activity, control the direction of pollen tube growth.  相似文献   

20.
The dynamic activity of tip-localized filamentous actin (F-actin) in pollen tubes is controlled by counteracting RIC4 and RIC3 pathways downstream of the ROP1 guanosine triphosphatase promoting actin assembly and disassembly, respectively. We show here that ROP1 activation is required for both the polar accumulation and the exocytosis of vesicles at the plasma membrane apex. The apical accumulation of exocytic vesicles oscillated in phase with, but slightly behind, apical actin assembly and was enhanced by overexpression of RIC4. However, RIC4 overexpression inhibited exocytosis, and this inhibition could be suppressed by latrunculin B treatment or RIC3 overexpression. We conclude that RIC4-dependent actin assembly is required for polar vesicle accumulation, whereas RIC3-mediated actin disassembly is required for exocytosis. Thus ROP1-dependent F-actin dynamics control tip growth through spatiotemporal coordination of vesicle targeting and exocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号