首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
SUMMARY. 1. Food web manipulation, by removal of planktivorous or benthivorous fish, is a promising method for reducing phytoplankton concentrations in shallow lakes. The part that nutrients may play in the success of such a measure is not well documented.
2. In this study, we analysed the flow of phosphorus through the food web of the shallow, eutrophic Lake Wolderwijd/Nuldernauw. Our studies occurred in the years 1981 (when a bloom of cyanobacteria occurred) and 1987 (no bloom); a hypothetical situation was also examined in which most of the bream are assumed to be removed.
3. The analysis shows that the success of biomanipulation is probably due not only to an increased grazing pressure on the phytoplankton, but also to a decreased availability of phosphorus. The reason for this is the removal of detrital phosphorus by increased sedimentation as a result of a predicted increase in growth of macrophytes after biomanipulation.  相似文献   

2.
A. F. Richter 《Aquatic Ecology》1986,20(1-2):165-172
Biomanipulation as a tool for lake restoration is discussed mainly using literature data. It is based on the exploitation of the interactions both within and between the trophic levels in an aquatic ecosystem. Important among the interactions are: competition for light and nutrients between aquatic macrophytes and phytoplankton and among different phytoplankton species; grazing by planktonic and benthic filter feeders; and size-selective predation by fish. In several case studies biomanipulation has proved to be successful in restorating mildly eutrophic small waterbodies. However, for long-term stability of the restored ecosystems supplementary measures like reducing the external nutrient loadings are needed. The feasibility of the different biomanipulation measures to improve the water quality in shallow Dutch lakes is discussed. Preliminary results on biomanipulation experiments in enclosures withOscillatoria agardhii and the benthic filter feederDreissena polymorpha are given.  相似文献   

3.
1. The main focus of this study was to investigate the effects of single and multiple moderate doses of lime (slaked lime, Ca(OH)2, and/or calcite, CaCO3) on eutrophic hardwater lakes. This information would contribute to strategies to manage phytoplankton and macrophyte biomass in eutrophic lakes.
2. Water chemistry and biota were monitored for up to 7 years after initial lime treatment and results were compared with reference systems.
3. Complementary studies investigated the effect of lime on macrophytes in ponds, irrigation canals and microcosm experiments.
4. When water pH was kept within its natural range (≤ 10), single and multiple lime applications to lakes and ponds controlled macrophyte biomass, without negatively affecting invertebrate communities.
5. Single lime treatments at moderate dosages of lakes and ponds resulted in variable and mostly temporary changes in chlorophyll a (chl a ) and phosphorus (P) concentration. Although sediment P release was reduced in single-dose lakes during the first winter following treatment, reductions appeared temporary.
6. Multiple treatments of lakes and ponds were effective at reducing both chl a and P concentrations over longer periods. Mean winter P release rate was also reduced after initial treatment.
7. In laboratory studies, sediment cores were incubated with eight different treatments to assess P release. Redox-sensitive treatments were no more effective at lowering total P concentration in overlying water than some redox-insensitive treatments. Lime reduced total P concentrations, but was not as effective as treatments with alum.
8. The use of lime in managing macrophyte and phytoplankton biomass in shallow, hardwater lakes and ponds may be preferable over other treatments, because lime is economical and non-toxic as long as pH is kept within a natural range.  相似文献   

4.
Biomanipulation of lake ecosystems: an introduction   总被引:6,自引:0,他引:6  
SUMMARY 1. This paper is an introduction to a special issue of Freshwater Biology containing selected papers from an international symposium on Food Web Effects of Fish in Lake Ecosystems: Research Progress, Water Quality and Fisheries Management held from 31 May to 3 June 2000 in Rheinsberg, Germany. The primary goal of the workshop was to enlarge the current view of fish-induced effects on lake ecosystems. An additional goal was to promote biomanipulation as a multiple-use tool for managing freshwater ecosystems.
2. The three main topics addressed at the workshop were: (i) mechanisms involved in biomanipulation, (ii) whole-lake case studies and (iii) management aspects in water quality and fisheries.
3. Mortality of Daphnia , nutrient recycling, habitat selection and fish predation are reported as important mechanisms governing food-web effects as a result of biomanipulation.
4. Whole-lake case studies indicate that repeated fish removal can help improve water quality of shallow lakes, but successful biomanipulation of deep, thermally stratifying lakes remains difficult.
5. In many cases, biomanipulation of lakes has proved to provide benefits in addition to improving water quality. As all lake users are potentially affected when biomanipulation is used as a lake management tool, their concerns need to be clearly recognised if biomanipulation is to be successful in practice.  相似文献   

5.
Biomanipulation through fish removal is a tool commonly used to restore a clear-water state in lakes. Biomanipulation of ponds is, however, less well documented, although their importance for biodiversity conservation and public amenities is undisputed. In ponds, a more complete fish removal can be carried out as compared to lakes and therefore a stronger response is expected. Fish recolonization can, however, potentially compromise the longer term success of biomanipulation. Therefore, we investigated the impact of fish recolonization on zooplankton, phytoplankton, and nutrients for several years after complete drawdown and fish removal in function of submerged vegetation cover in 12 peri-urban eutrophic ponds situated in Brussels (Belgium). Fish recolonization after biomanipulation had a considerable impact on zooplankton grazers, reducing their size and density substantially, independent of the extent of submerged vegetation cover. Only ponds with <30% cover of submerged vegetation shifted back to a turbid state after fish recolonization, coinciding with an increase in density of small cladocerans, rotifers, and cyclopoid copepods. In ponds with >30% submerged vegetation cover, macrophytes prevented an increase in phytoplankton growth despite the disappearance of large zooplankton grazers. Our results suggest that macrophytes, rather than by providing a refuge for zooplankton grazers, control phytoplankton through other associated mechanisms and confirm that the recovery of submerged macrophytes is essential for biomanipulation success. Although the longer term effect of biomanipulation is disputable, increased ecological quality could be maintained for several years, which is particularly interesting in an urban area where nutrient loading reduction is often not feasible.  相似文献   

6.
1. Variations in the light regime can affect the availability and quality of food for zooplankton grazers as well as their exposure to fish predation. In northern lakes light is particularly low in winter and, with increasing warming, the northern limit of some present-day plankton communities may move further north and the plankton will thus receive less winter light.
2. We followed the changes in the biomass and community structure of zooplankton and phytoplankton in a clear and a turbid shallow lake during winter (November–March) in enclosures both with and without fish and with four different light treatments (100%, 55%, 7% and <1% of incoming light).
3. In both lakes total zooplankton biomass and chlorophyll- a were influenced by light availability and the presence of fish. Presence of fish irrespective of the light level led to low crustacean biomass, high rotifer biomass and changes in the life history of copepods. The strength of the fish effect on zooplankton biomass diminished with declining light and the effect of light was strongest in the presence of fish.
4. When fish were present, reduced light led to a shift from rotifers to calanoid copepods in the clear lake and from rotifers to cyclopoid copepods in the turbid lake. Light affected the phytoplankton biomass and, to a lesser extent, the phytoplankton community composition and size. However, the fish effect on phytoplankton was overall weak.
5. Our results from typical Danish shallow eutrophic lakes suggest that major changes in winter light conditions are needed in order to have a significant effect on the plankton community. The change in light occurring when such plankton communities move northwards in response to global warming will mostly be of modest importance for this lake type, at least for the rest of this century in an IPCC A2 scenario, while stronger effects may be observed in deep lakes.  相似文献   

7.
SUMMARY 1. A biomanipulation experiment was carried out in a small (10 ha), but relatively deep (17 m) and highly eutrophic lake in northern Poland. The lake had been stocked in 1996, 1997 and 1998 with a variety of piscivorous fish (pike, catfish, trout and pikeperch), in order to reduce numbers of cyprinid planktivores.
2. Piscivore stocking was associated with a threefold decrease in the offshore fish density (night echosounding). Despite this reduction, the large planktonic cladoceran, Daphnia hyalina , remained scarce, whereas the density of small-sized zooplankton increased greatly.
3. The lack of demographic response in D. hyalina was probably due to the anoxia in the hypolimnetic refuge of this vertically migrating species. The anoxic hypolimnion, below 3–4 m depth, was inhabited day and night by numerous Chaoborus flavicans larvae.
4. Changes in zooplankton were associated with shifts in the taxonomic composition (from single-cell green algae to filamentous cyanobacteria), size structure (from nano- to net phytoplankton) and seasonal dynamics of phytoplankton, but not in the average biomass of planktonic algae. A clear-water phase, which was absent in the prestocking years, developed in spring, with Secchi depth reaching 2.5 m, a value which had never been recorded in the 20 years preceding the biomanipulation. In general, the lake's status was switched from hypertrophic to eutrophic.
5. Deteriorating food conditions, resulting from qualitative changes in the phytoplankton community, combined with predation pressure by the remaining fish and Chaoborus larvae were associated with the ultimate elimination of D. hyalina from the lake.  相似文献   

8.
Lakes can be sources or sinks of carbon, depending on local conditions. Recent studies have shown that the CO2 efflux increases when lakes recover from eutrophication, mainly as a result of a reduction in phytoplankton biomass, leading to less uptake of CO2 by producers. We hypothesised that lake restoration by removal of coarse fish (biomanipulation) or invasion of mussels would have a similar effect. We studied 14–22 year time series of five temperate Danish lakes and found profound effects on the calculated CO2 efflux of major shifts in ecosystem structure. In two lakes, where limited colonisation of submerged macrophytes occurred after biomanipulation or invasion of zebra mussels (Dreissena polymorpha), the efflux increased significantly with decreasing phytoplankton chlorophyll a. In three lakes with major interannual variation in macrophyte abundance, the efflux declined with increasing macrophyte abundance in two of the lakes, while no relation to macrophytes or chlorophyll a was found in the third lake, likely due to high groundwater input to this lake. We conclude that clearing water through invasive mussels or lake restoration by biomanipulation may increase the CO2 efflux from lakes. However, if submerged macrophytes establish and form dense beds, the CO2 efflux may decline again.  相似文献   

9.
1. Data on submerged and floating-leafed macrophytes, phytoplankton, nutrients (N, P) and calcium were collected from twenty-four small lakes ( 1 km2) over a wide range of latitudes in Norway. The majority of the investigated lakes were mesotrophic or eutrophic, and most of the lakes were markedly affected by diffuse and point-source runoff from agriculture. According to their macrophyte species composition, the majority of the lakes can be classified as Potamogeton lakes or Chara lakes, or a combination of these.
2. This study is consistent with the 'two alternative stable states' hypothesis. We observed clearwater lakes with dense macrophyte cover over a wider range of total P concentration than has been reported previously: from 30 to more than 700 mg P m–3. The clearwater state was only observed in lakes with mean depths of less than 1.9 m.
3. Most clear lakes with high cover of submerged vegetation showed indications of N limitation.
4. In this study nearly all the macrophyte-dominated lakes with P concentrations above 30 mg m–3 had dense stands of Ceratophyllum demersum (L.). This indicates that Ceratophyllum may also play an important role in stabilizing and maintaining a clearwater state at high P concentrations.  相似文献   

10.
1. Data on submerged and floating-leafed macrophytes, phytoplankton, nutrients (N, P) and calcium were collected from twenty-four small lakes ( 1 km2) over a wide range of latitudes in Norway. The majority of the investigated lakes were mesotrophic or eutrophic, and most of the lakes were markedly affected by diffuse and point-source runoff from agriculture. According to their macrophyte species composition, the majority of the lakes can be classified as Potamogeton lakes or Chara lakes, or a combination of these.
2. This study is consistent with the 'two alternative stable states' hypothesis. We observed clearwater lakes with dense macrophyte cover over a wider range of total P concentration than has been reported previously: from 30 to more than 700 mg P m–3. The clearwater state was only observed in lakes with mean depths of less than 1.9 m.
3. Most clear lakes with high cover of submerged vegetation showed indications of N limitation.
4. In this study nearly all the macrophyte-dominated lakes with P concentrations above 30 mg m–3 had dense stands of Ceratophyllum demersum (L.). This indicates that Ceratophyllum may also play an important role in stabilizing and maintaining a clearwater state at high P concentrations.  相似文献   

11.
1. Two hardwater eutrophic lakes of central Alberta were subjected to single doses of Ca(OH)2 (74 or 107 mg L–1). The effects of lime treatment on phosphorus (P) precipitation, sediment P release, and macrophyte biomass were assessed for up to 2 years.
2. In both lakes, sediment P release was reduced to 16 and 27%, respectively, of pre-treatment values by the first winter following treatment. However, sediment P release returned to pre-treatment values during the following year.
3. In contrast to these short-term effects, macrophyte biomass decreased by as much as 80% after lime application and remained there for at least 2 years.
4. Our results indicate that a single dose of Ca(OH)2 may give short-term (< 1 year) control of P and long-term control (> 1 year) of macrophytes in hardwater eutrophic lakes of Alberta.  相似文献   

12.
DeMott WR  Pape BJ 《Oecologia》2005,142(1):20-27
We used laboratory experiments with ten Daphnia taxa to test for links between Daphnia P-content, growth rate and habitat preference. The taxa represent a wide range of body sizes and most show distinct preferences for one of three habitats: shallow lakes, deep, stratified lakes or fishless ponds. Previous studies show that taxa from shallow lakes and fishless ponds experience high predation risk and rich food resources, whereas taxa from deep lakes experience low predation risk, strong food limitation and potentially P-deficient resources. Thus, we predicted higher P-content and higher maximal growth rates in taxa from ponds and shallow lakes and lower P-content, lower maximal growth but reduced sensitivity to P-limitation in taxa preferring stratified lakes. In each of 25 experiments, a clonal Daphnia cohort was cultured for 4 days on a P-sufficient (molar C:P ratio 70) or a P-deficient (C:P 1,000) diet of a green alga at a high concentration (1 mg C l–1). The P-content of adult Daphnia fed the P-sufficient diet ranged from 1.52 to 1.22% mass. Small-bodied taxa from shallow lakes had higher P-content than larger-bodied taxa from deep lakes or fishless ponds. However, we found a nonsignificant negative correlation between P-content and growth on the P-sufficient diet, rather than the positive relationship predicted by the growth rate hypothesis. The P-deficient diet resulted in declines in both growth rate and P-content compared with the P-sufficient controls and the extent of the declines differed between taxa. Taxa from ponds showed a marginally greater decline in growth with the P-deficient diet compared with taxa from shallow or deep lakes. However, contrary to stoichiometric theory, no relationship was found between a species P-content and growth depression on the P-deficient diet. Although we found evidence for habitat adaptations, our results show that factors other than Daphnia P-content are important in determining differences between Daphnia species in both maximal growth rate and sensitivity to P-limited growth.  相似文献   

13.
1. A year-round study was conducted in a mesotrophic reservoir to determine the dynamics of zooplankton populations as a function of food availability (edible phytoplankton), nutrient concentration, temperature and hydraulic regime.
2. Rotifer biomass was correlated with soluble reactive phosphorus (SRP) concentration. The abundance of the rotifers Keratella cochlearis and Anuraeopsis fissa were not correlated with food availability (measured by chlorophyll and cell counts) but showed a strong dependence on P availability. Another rotifer, Synchaeta oblonga , and crustacean species were not related to nutrient availability but seemed to be dependent on food concentrations, especially of some phytoplankton taxa.
3. In this field study, rotifers seemed more susceptible than Daphnia or copepods to P-limitation. Among rotifer species, Keratella seemed to be more susceptible than Anuraeopsis to P limitation. Different susceptibilities of zooplankton species to nutrient limitation may be important in explaining the dynamics of these organisms in natural situations. Further analyses are warranted to clarify the interactions between nutrient limitation and energy limitation among zooplankton.  相似文献   

14.
1. Two small humic lakes in northern Sweden with concentrations of dissolved organic carbon (DOC) between 15 and 20 mg L–1 were fertilized with inorganic phosphorus (P) and inorganic nitrogen (N), respectively. A third lake was unfertilized and served as a control. In addition to this lake fertilization experiment, data from different regional surveys were used to assess the role of different limiting factors.
2. The P fertilization had no effects on bacterioplankton or phytoplankton, while phytoplankton were significantly stimulated by N fertilization. Inorganic nutrient limitation of bacterioplankton was a function of DOC concentration in water of the investigated region and nutrient-limited bacteria were found only in lakes with DOC concentrations less than around 15 mg L–1
3. The fertilization experiments demonstrated that the DOC-rich experimental lakes contained a bioavailable pool of P that was not utilized to its full potential under natural conditions. The overall mobilization of energy (bacterioplankton plus phytoplankton) in the experimental lakes was restricted by lack of inorganic N.  相似文献   

15.
1. In some shallow lakes, Daphnia and other important pelagic consumers of phytoplankton undergo diel horizontal migration (DHM) into macrophytes or other structures in the littoral zone. Some authors have suggested that DHM reduces predation by fishes on Daphnia and other cladocerans, resulting in a lower phytoplankton biomass in shallow lakes than would occur without DHM. The costs and benefits of DHM, and its potential implications in biomanipulation, are relatively unknown, however. 2. In this review, we compare studies on diel vertical migration (DVM) to assess factors potentially influencing DHM (e.g. predators, food, light, temperature, dissolved oxygen, pH). We first provide examples of DHM and examine avoidance by Daphnia of both planktivorous (PL) fishes and predacious invertebrates. 3. We argue that DHM should be favoured when the abundance of macrophytes is high (which reduces planktivory) and the abundance of piscivores in the littoral is sufficient to reduce planktivores. Food in the littoral zone may favour DHM by daphnids, but the quality of these resources relative to pelagic phytoplankton is largely unknown. 4. We suggest that abiotic conditions, such as light, temperature, dissolved oxygen and pH, are less likely to influence DHM than DVM because weaker gradients of these conditions occur horizontally in shallow lakes relative to vertical gradients in deep lakes. 5. Because our understanding of DHM is rudimentary, we highlight potentially important research areas: studying a variety of systems, comparing temporal and spatial scales of DHM in relation to DVM, quantifying positive and negative influences of macrophytes, focusing on the role of invertebrate predation, testing the performance of cladocerans on littoral versus pelagic foods (quantity and quality), investigating the potential influence of temperature, and constructing comprehensive models that can predict the likelihood of DHM. Our ability to biomanipulate shallow lakes to create or maintain the desired clear water state will increase as we learn more about the factors initiating and influencing DHM.  相似文献   

16.
Some well-documented studies on restoring eutrophic lake systems in The Netherlands by fish stock management have been evaluated with the emphasis on the role of macrophytes. Furthermore, the factors determining the light climate for submerged macrophytes in a large shallow eutrophic lake (Lake Veluwe) have been assessed and the potential success of biomanipulation in large scale projects is discussed. Today relatively little attention has been paid to macrophyte management although the importance of macrophytes in lake restoration has been recognized regularly. The biomanipulation strategy was successful in small scale projects. In a large scale project, however, wind-induced resuspension may largely determine the underwater light climate through attenuation by the water column and periphytic layer. Therefore, restoration of relatively large waterbodies by fish stock management only is expected not to lead to any noteworthy improvement of the light climate for submerged macrophytes. Additional measures aimed at reducing wind-induced resuspension of sediment particles and reestablishing of the macrophyte stands are required for successful biomanipulation strategies. Water quality managers should pay more attention to macrophyte stands in biomanipulation projects because macrophytes enhance a more stable and diverse ecosystem. Restoration objectives and the methods of their achievement must be carefully planned since an abundant submerged macrophyte vegetation may have undesirable effects as well.  相似文献   

17.
The aim of this review is to identify problems, find general patterns, and extract recommendations for successful biomanipulation. An important conclusion is that the pelagic food chain from fish to algae may not be the only process affected by a biomanipulation. Instead, this process should be viewed as the “trigger” for secondary processes, such as establishment of submerged macrophytes, reduced internal loading of nutrients, and reduced resuspension of particles from the sediment. However, fish reduction also leads to a high recruitment of young-of-the-year (YOY) fish, which feed extensively on zooplankton. This expansion of YOY the first years after fish reduction is probably a major reason for less successful biomanipulations. Recent, large-scale biomanipulations have made it possible to update earlier recommendations regarding when, where, and how biomanipulation should be performed. More applicable recommendations include (1) the reduction in the biomass of planktivorous fish should be 75% or more; (2) the fish reduction should be performed efficiently and rapidly (within 1–3 years); (3) efforts should be made to reduce the number of benthic feeding fish; (4) the recruitment of YOY fish should be reduced; (5) the conditions for establishment of submerged macrophytes should be improved; and (6) the external input of nutrients (phosphorus and nitrogen) should be reduced as much as possible before the biomanipulation. Recent biomanipulations have shown that, correctly performed, the method also achieves results in large, relatively deep and eutrophic lakes, at least in a 5-year perspective. Although repeated measures may be necessary, the general conclusion is that biomanipulation is not only possible, but also a relatively inexpensive and attractive method for management of eutrophic lakes, and in particular as a follow-up measure to reduced nutrient load. Received 14 April 1998; accepted 31 August 1998  相似文献   

18.
We analyzed experimentally the relative contribution of phytoplankton and periphyton in two shallow lakes from the Pampa Plain (Argentina) that represent opposite scenarios according to the alternative states hypothesis for shallow lakes: a clear lake with submerged macrophytes, and a turbid lake with high phytoplankton biomass. To study the temporal changes of both microalgal communities under such contrasting conditions, we placed enclosures in the littoral zone of each lake, including natural phytoplankton and artificial substrata, half previously colonized by periphyton until a mature stage and half clean to analyze periphyton colonization. In the clear vegetated shallow lake, periphyton chlorophyll a concentrations were 3–6 times higher than those of the phytoplankton community. In contrast, phytoplankton chlorophyll a concentrations were 76–1,325 times higher than those of periphyton in the turbid lake. Here, under light limitation conditions, the colonization of the periphyton was significantly lower than in the clear lake. Our results indicate that in turbid shallow lakes, the light limitation caused by phytoplankton determines a low periphyton biomass dominated by heterotrophic components. In clear vegetated shallow lakes, where nitrogen limitation probably occurs, periphyton may develop higher biomass, most likely due to their higher efficiency in nutrient recycling.  相似文献   

19.
20.
1. The impact of whole-lake lime (slaked lime, Ca(OH)2, and/or calcite, CaCO3) addition on plankton communities was evaluated in eutrophic hardwater lakes on the North American Boreal Plain.
2. Two lakes received a single treatment of lime (Ca(OH)2 at 74 or 107 mg L–1), two lakes received multiple treatments with Ca(OH)2 and/or CaCO3 (5–78 mg L–1), and four lakes were untreated and served as reference systems.
3. Over the long-term (> 1 year), phytoplankton biomass was reduced in multiple-dose lakes, but not in single-dose lakes. Cyanobacteria typically dominated the algal community in the years before, during and after lime treatment in both single- and multiple-dose lakes.
4. In the single-dose lakes, randomized intervention analysis showed no significant change in the biomass of zooplankton after lime addition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号