首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tropical floodplain lake ecosystems are recognized as important sources of carbon (C) from the water to the atmosphere. They receive large amounts of organic matter and nutrients from the watershed, leading to intense net heterotrophy and carbon dioxide (CO2) emission from open waters. However, the role of extensive stands of floating macrophytes colonizing floodplains areas is still neglected in assessments of net ecosystem exchange of CO2 (NEE). We assessed rates of air-lake CO2 flux using static chambers in both open waters and waters covered by the widespread floating aquatic macrophyte (water hyacinth; Eichornia sp.) in two tropical floodplain lakes in Pantanal, Brazil during different hydrological seasons. In both lakes, areas colonized by floating macrophytes were a net CO2 sink during all seasons. In contrast, open waters emitted CO2, with higher emissions during the rising and high water periods. Our results indicate that the lake NEE can be substantially overestimated (fivefold or more in the studied lakes) if the carbon fixation by macrophytes is not considered. The contribution of these plants can lead to neutral or negative NEE (that is, net uptake of CO2) on a yearly basis. This highlights the importance of floating aquatic macrophytes for the C balance in shallow lakes and extensive floodplain areas.  相似文献   

2.
Change in the abundance of benthic macroinvertebrates and the stable isotope composition (C, N) of benthic invertebrates and zooplankton in Lake Vaeng, Denmark, was investigated over an 18-year period following biomanipulation (removal of cyprinids). During the first nine years after biomanipulation, the lake was clear and submerged macrophytes were abundant; after this period, a shift occurred to low plant abundance and high turbidity. Two years after the biomanipulation, total density of benthic macroinvertebrates reached a maximum of 17042 (±2335 SE) individuals m−2 and the density was overall higher when the lake was in a clear state. Redundancy analysis (RDA) suggested macrophyte abundance and total nitrogen (TN) concentration were the dominant structuring forces on the benthic macroinvertebrate assemblage. Stable isotope analysis revealed that δ13C of macroinvertebrates and zooplankton was markedly higher in years with high submerged macrophyte abundance than in years without macrophytes, most likely reflecting elevated δ13C of phytoplankton and periphyton mediated by a macrophyte-induced lowering of lake water CO2 concentrations. We conclude that the strong relationship between macrophyte coverage and δ13C of macroinvertebrates and cladocerans may be useful in paleoecological studies of past changes in the dynamics of shallow lakes, as change in macrophyte abundance may be tracked by the δ13C of invertebrate remains in the sediment.  相似文献   

3.
Northern lakes are ice-covered for considerable portions of the year, where carbon dioxide (CO2) can accumulate below ice, subsequently leading to high CO2 emissions at ice-melt. Current knowledge on the regional control and variability of below ice partial pressure of carbon dioxide (pCO2) is lacking, creating a gap in our understanding of how ice cover dynamics affect the CO2 accumulation below ice and therefore CO2 emissions from inland waters during the ice-melt period. To narrow this gap, we identified the drivers of below ice pCO2 variation across 506 Swedish and Finnish lakes using water chemistry, lake morphometry, catchment characteristics, lake position, and climate variables. We found that lake depth and trophic status were the most important variables explaining variations in below ice pCO2 across the 506 lakes. Together, lake morphometry and water chemistry explained 53% of the site-to-site variation in below ice pCO2. Regional climate (including ice cover duration) and latitude only explained 7% of the variation in below ice pCO2. Thus, our results suggest that on a regional scale a shortening of the ice cover period on lakes may not directly affect the accumulation of CO2 below ice but rather indirectly through increased mobility of nutrients and carbon loading to lakes. Thus, given that climate-induced changes are most evident in northern ecosystems, adequately predicting the consequences of a changing climate on future CO2 emission estimates from northern lakes involves monitoring changes not only to ice cover but also to changes in the trophic status of lakes.  相似文献   

4.
In shallow lakes with large littoral zones, epiphytes and submerged macrophytes can make an important contribution to the total annual primary production. We investigated the primary production (PP) of phytoplankton, submerged macrophytes, and their epiphytes, from June to August 2005, in two large shallow lakes. The production of pelagic and littoral phytoplankton and of the dominant submerged macrophytes in the littoral zone (Potamogeton perfoliatus in Lake Peipsi and P. perfoliatus and Myriopyllum spicatum in Lake Võrtsjärv) and of their epiphytes was measured using a modified 14C method. The total PP of the submerged macrophyte area was similar in both lakes: 12.4 g C m?2 day?1 in Peipsi and 12.0 g C m?2 day?1 in Võrtsjärv. In Peipsi, 84.2% of this production was accounted for by macrophytes, while the shares of phytoplankton and epiphytes were low (15.6 and 0.16%, respectively). In Võrtsjärv, macrophytes contributed 58%, phytoplankton 41.9% and epiphytes 0.1% of the PP in the submerged macrophyte area. Epiphyte production in both lakes was very low in comparison with that of phytoplankton and macrophytes: 0.01, 5.04, and 6.97 g C m?2 day?1, respectively, in Võrtsjärv, and 0.02, 1.93, and 10.5 g C m?2 day?1, respectively, in Peipsi. The PP of the littoral area contributed 10% of the total summer PP of Lake Peipsi sensu stricto and 35.5% of the total summer PP of Lake Võrtsjärv.  相似文献   

5.
Restoration of shallow lakes to a clear-water state, often characterized by high submerged macrophyte cover and a high proportion of piscivores such as perch, Perca fluviatilis L., frequently involves removal of a large proportion of the zoobenthivorous fish, such as bream, Abramis brama L., and roach, Rutilus rutilus L. (i.e. biomanipulation). However, establishment of submerged macrophytes is often delayed following fish removal. This is unfortunate because plant beds typically host high densities of the macroinvertebrates constituting the diet of small perch and thus help perch to go through the bottleneck from feeding on macroinvertebrates to feeding on fish. Establishment of artificial plant beds may be a useful tool to enhance macroinvertebrate population growth and thus food resources for small perch until the natural plants have established. To investigate this restoration option, we studied during two growing seasons (June–October) the composition and abundance of the macroinvertebrate community in artificial plant beds installed in shallow Lake Væng (Denmark) comprising the initial phase of a biomanipulation effort by fish removal. Lake areas with artificial plant beds exhibited substantially higher macroinvertebrate densities than the lake bottom. This suggests that artificial plant beds may be used as feeding grounds for small perch, similarly to the well-known refuge effect for zooplankton against fish predation. In this way, artificial plant beds could help maintain a clear-water state during the transient period when natural submerged vegetation is not yet established in the lake.  相似文献   

6.
7.
To restore deteriorated lake ecosystems, it is important to identify environmental factors that influence submerged macrophyte communities. While sediment is a critical environmental factor for submerged macrophytes and many studies have examined effects of sediment type on the growth of individual submerged macrophytes, very few have tested how sediment type affects the growth and species composition of submerged macrophyte communities. We constructed submerged macrophyte communities containing four co-occurring submerged macrophytes (Hydrilla verticillata, Myriophyllum spicatum, Ceratophyllum demersum and Chara fragilis) and subjected them to three sediment treatments, i.e., clay, a mixture of clay and quartz sand at a volume ratio of 1:1 and a mixture at a volume ratio of 1:4. Compared to the clay, the 1:1 mixture treatment greatly increased overall biomass, number of shoot nodes and shoot length of the community, but decreased its diversity. This was because it substantially promoted the growth of H. verticillata within the community, making it the most abundant species in the mixture sediment, but decreased that of M. spicatum and C. demersum. The sediment type had no significant effects on the growth of C. fragilis. As a primary nutrient source for plant growth, sediment type can have differential effects on various submerged macrophyte species and 1:1 mixture treatment could enhance the performance of the communities, increasing the overall biomass, number of shoot nodes and shoot length by 39.03%, 150.13% and 9.94%, respectively, compared to the clay treatment. Thus, measures should be taken to mediate the sediment condition to restore submerged macrophyte communities with different dominant species.  相似文献   

8.
Pettersson  Kurt  Grust  Karin  Weyhenmeyer  Gesa  Blenckner  Thorsten 《Hydrobiologia》2003,501(1-3):75-81
The effect of submerged macrophytes on interactions among epilimnetic phosphorus, phytoplankton, and heterotrophic bacterioplankton has been acknowledged, but remains poorly understood. Here, we test the hypotheses that the mean summer phytoplankton biomass (chlorophyll a): phosphorus ratios decrease with increased macrophyte cover in a series of nine lakes. Further, we test that both planktonic respiration and bacterioplankton production increase with respect to phytoplankton biomass along the same gradient of increasing macrophyte cover. Increased macrophyte cover was associated with a lower fraction of particulate phosphorus in epilimnia, with total particulate phosphorus declining from over 80% of total phosphorus in a macrophyte free lake to less than 50% in a macrophyte rich lake. Phytoplankton biomass (chlorophyll a) too was lower in macrophyte dominated lakes, despite relatively high levels of total dissolved phosphorus. Planktonic respiration and bacterioplankton production were higher in macrophyte rich lakes than would be expected from phytoplankton biomass alone, pointing to a subsidy of bacterioplankton metabolism by macrophyte beds at the whole lake scale. The results suggest that the classical view of pelagic interactions, which proposes phosphorus determines phytoplankton abundance, which in turn determines bacterial abundance through the production of organic carbon, becomes less relevant as macrophyte cover increases.  相似文献   

9.
Freshwater lake sediments support a variety of submerged macrophytes that may host groups of bacteria exerting important ecological functions. We collected three kinds of commonly found submerged macrophyte species (Ceratophyllum demersum, Vallisneria spiralis and Elodea nuttallii) to investigate the bacterial community associated with their rhizosphere sediments. High-throughput 454 pyrosequencing and bioinformatics analyses were performed to examine the diversity and composition of the bacterial community. The results obtained indicated that the diversity of the bacterial community associated with the rhizosphere sediments of submerged macrophytes was significantly lower than that of the bulk sediment. Remarkable differences in the bacterial community composition between the rhizosphere and bulk sediments were also observed.  相似文献   

10.
The resting stages of freshwater zooplankton constitute a special mechanism for passive dispersal, often displaying a variety of adaptations so as to ease transport. In floodplain systems, macrophytes are one of the most representative biotic groups showing interactions with the zooplankton community. The annual fluctuations in the hydrometric level of the Paraná River favour the displacement of this aquatic vegetation in floodplain environments. This paper hypothesizes that the roots and submerged portions of different macrophytes contain zooplankton resting stages which are able to hatch when environmental conditions are favourable. In turn, this contributes to the dispersal of zooplankton by plants when they are displaced by the flood pulse. Six macrophyte species were sampled (Eichhornia crassipes, Azolla filiculoides, Limnobium spongia, Pistia stratiotes, Eichhornia azurea and Nymphoides indica) from lakes within the Paraná River floodplain. Roots and submerged portions of vegetation were stored (90 days) at 4 °C then incubated at 25 °C for 90 days. Hatchling emergence was recorded at 2-day intervals during this period. In total, 70 zooplankton taxa were recorded in all macrophyte samples; rotifers were the most representative group (69%) followed by cladocerans (28%) and copepods (3%). The roots and submerged parts of aquatic vegetation house viable zooplankton resting stages. This phenomenon allows the dispersal of resting stages and therefore colonization of new habitats during the displacement of macrophyte species.  相似文献   

11.
Several studies have shown that submerged macrophytes provide a refuge for zooplankton against fish predation, whereas the role of emergent and floating-leaved species, which are often dominant in eutrophic turbid lakes, is far less investigated. Zooplankton density in open water and amongst emergent and floating-leaved vegetation was monitored in a small, eutrophic lake (Frederiksborg Slotssø) in Denmark during July–October 2006. Emergent and floating-leaved macrophytes harboured significantly higher densities of pelagic as well as plant-associated zooplankton species, compared to the open water, even during periods where the predation pressure was presumably high (during the recruitment of 0+ fish fry). Zooplankton abundance in open water and among vegetation exhibited low values in July and peaked in August. Bosmina and Ceriodaphnia dominated the zooplankton community in the littoral vegetated areas (up to 4,400 ind l?1 among Phragmites australis and 11,000 ind l?1 between Polygonum amphibium stands), whereas the dominant species in the pelagic were Daphnia (up to 67 ind l?1) and Cyclops (41 ind l?1). The zooplankton density pattern observed was probably a consequence of concomitant modifications in the predation pressure, refuge availability and concentration of cyanobacteria in the lake. It is suggested that emergent and floating-leaved macrophytes may play an important role in enhancing water clarity due to increased grazing pressure by zooplankton migrating into the plant stands. As a consequence, especially in turbid lakes, the ecological role of these functional types of vegetation, and not merely that of submerged macrophyte species, should be taken into consideration.  相似文献   

12.
Cyanobacterial exudates are known to allelopathically inhibit submerged macrophytes, but the influence of the cyanobacteria growth phase on this effect is yet unknown. We compared the effect of exudates of the exponential growth phase of Microcystis aeruginosa Kütz. Elenk with exudates during the decline phase on seedlings of the macrophyte species Potamogeton crispus L. Biomass, chlorophyll content, the ratio of variable–maximum fluorescence (F v/F m), and light response capacity of P. crispus seedings were significantly inhibited when affected by M. aeruginosa exudates of the exponential growth phase but promoted by exudates of the decline phase. Tiller numbers of P. crispus increased by 350% under the influence of exponential phase exudates, but decreased by 60% when decline phase exudates were applied. Both exudates increased the malondialdehyde contents and decreased the activity of superoxide dismutase and peroxidase in P. crispus seedlings. We conclude that the exponential growth phase of cyanobacteria rather than the decline phase is important for disrupting photosynthesis and for inducing oxidative stress in submerged macrophytes. Planting P. crispus should thus not be applied in summer but during the cyanobacteria decline phase.  相似文献   

13.
Submerged macrophytes have been disappearing from the Kanto Plain, Japan since the 1960s. This disappearance is usually attributable to the interaction between macrophytes and phytoplankton. Phytoplankton contributes to shading of the available light and changes the availability of inorganic carbon from free CO2 to HCO 3 ? for use in photosynthesis. However, limited information is available about the interaction between carbon fraction and submerged macrophytes through phytoplankton abundance. In this short note, we observe the distribution of submerged macrophytes and phytoplankton in a small canal. We found that, despite high photosynthetically active radiation (PAR) in the downstream region, low free CO2 concentration through phytoplankton abundance can deplete free CO2 for submerged macrophytes. In contrast, the upstream region exhibited macrophytes in an environment with high free CO2 concentration. The stable carbon isotope ratio of submerged macrophytes follows this pattern, with more positive values occurring in the downstream region and more negative values in the upstream region. It has been reported that phytoplankton limits light availability for submerged macrophytes, but carbon availability could also be a factor in the distribution of submerged macrophytes. Because the source of water for submerged macrophytes is groundwater, its preservation possibly plays a key role for the restoration of submerged macrophytes.  相似文献   

14.
The global climate change may lead to more extreme climate events such as severe flooding creating excessive pulse-loading of nutrients, including nitrogen (N), to freshwaters. We conducted a 3-month mesocosm study to investigate the responses of phytoplankton, zooplankton and Vallisneria spinulosa to different N loading patterns using weekly and monthly additions of in total 14 g N m?2 month?1 during the first 2 months. The monthly additions led to higher phytoplankton chlorophyll a and total phytoplankton biomass than at ambient conditions as well as lower leaf biomass and a smaller ramet number of V. spinulosa. Moreover, the biomass of cyanobacteria was higher during summer (August) in the monthly treatments than those with weekly or no additions. However, the biomass of plankton and macrophytes did not differ among the N treatments at the end of the experiment, 1 month after the termination of N addition. We conclude that by stimulating the growth of phytoplankton (cyanobacteria) and reducing the growth of submerged macrophytes, short-term extreme N loading may have significant effects on shallow nutrient-rich lakes and that the lakes may show fast recovery if they are not close to the threshold of a regime shift from a clear to a turbid state.  相似文献   

15.
A new phytoplankton metric is presented, which is developed from a large dataset of Norwegian lakes (>2,000 samples from >400 lakes). In contrast to previous metrics, this index is not built on selected ‘indicative’ taxa, but uses all available taxonomic information at genus and species level. Taxa optima with respect to lake trophic status (derived from total phosphorus concentrations) are used to calculate a phytoplankton trophic index (TI) for each sample. Analysis of the TI shows that phytoplankton communities exhibit highly non-linear responses to eutrophication in Norwegian lakes. Reference lakes are characterized by very similar TIs despite having considerable variation in total phosphorus and chlorophyll a concentrations. TI exhibits a non-linear distribution along the eutrophication gradient which separates unimpacted from impacted sites in the study area. We further show that TI exhibits smaller seasonal variations than chlorophyll a, making it a more reliable indicator for lake monitoring. Implications for its applicability within the WFD are discussed.  相似文献   

16.
Macrophytes are widely recognized for improving water quality and stabilizing the desirable clear‐water state in lakes. The positive effects of macrophytes on water quality have been noted to be weaker in the (sub)tropics compared to those of temperate regions. We conducted a global meta‐analysis using 47 studies that met our set criteria to assess the overall effects of macrophytes on water quality (measured by phytoplankton chlorophyll a concentration, total nitrogen concentration, total phosphorus concentration, Secchi depth and the trophic state index) and to investigate how these effects correlate with latitude using meta‐regressions. We also examined if the effects of macrophytes on lake‐water quality differ with growth form and study design in (sub)tropical and temperate areas by grouping the data and then comparing the effect sizes. We found that macrophytes significantly reduced phytoplankton chlorophyll a concentration, total nitrogen concentration, total phosphorus concentration, as well as the trophic state index, but they did not have a significant overall effect on Secchi depth. The effects of macrophytes on reducing phytoplankton chlorophyll a concentration, total nitrogen concentration and the trophic state index did not differ with latitude. However, the reduction of total phosphorus concentration was greater at lower latitudes. We showed that at lower latitudes, the positive effects of macrophytes on water quality are similar to or greater than those at higher latitudes, thus challenging the prevailing paradigm of macrophytes being less effective at enhancing lake‐water quality in the (sub)tropics. Furthermore, our data showed that the macrophyte effects vary by growth forms, and the growth forms that positively affect water quality differ between the (sub)tropical and temperate areas. We showed a lack of significant macrophyte effects in surveys within and outside macrophyte stands, suggesting difference in the sensitivities of study designs or possibly weaker effects of macrophytes in lakes compared to experimental settings.  相似文献   

17.
Effects of red (RL) and blue (BL) light on acclimation of the unicellular green alga Chlamydomonas reinhardtii to the low level of ambient CO2 were studied. C. reinhardtii cells grown at 5% CO2 and under white light (170 μmol/(m2s)) had a relatively low activity of extracellular carbonic anhydrase (CA), a low affinity for dissolved inorganic carbon, and a low rate of photosynthesis under CO2-limiting conditions. These cells readily started acclimation to the low CO2 concentration when they were exposed to atmospheric air (~ 0.03% CO2) under RL or BL (150 μmol/(m2 s) each). The acclimation was manifested in a significant increase in the CO2-limited rate of photosynthesis, the affinity for dissolved inorganic carbon, and the extracellular CA activity with no difference between RL-and BL-cells. Independently of light quality, the acclimation was completed for 5–7 h after cell exposure to air. As is evident from RL-and BL-dependent changes in the sum of chlorophylls and chlorophyll a/b ratio, transfer of C. reinhardtii cells to air and RL or BL triggered also the process of algal photosynthetic adaptation to light quality. However, this process did not interfere with acclimation to low CO2 because started 4 h later. On the basis of similarity in the low CO2-induced changes under RL and BL, it is concluded that acclimation of C. reinhardtii to CO2-limiting conditions does not depend on light quality.  相似文献   

18.
The classical definition of mesophyll conductance (g m) represents an apparent parameter (g m,app) as it places (photo)respired CO2 at the same compartment where the carboxylation by Rubisco takes place. Recently, Tholen and co-workers developed a framework, in which g m better describes a physical diffusional parameter (g m,dif). They partitioned mesophyll resistance (r m,dif = 1/g m,dif) into two components, cell wall and plasmalemma resistance (r wp) and chloroplast resistance (r ch), and showed that g m,app is sensitive to the ratio of photorespiratory (F) and respiratory (R d) CO2 release to net CO2 uptake (A): g m,app = g m,dif/[1?+?ω(F?+?R d)/A], where ω is the fraction of r ch in r m,dif. We herein extend the framework further by considering various scenarios for the intracellular arrangement of chloroplasts and mitochondria. We show that the formula of Tholen et al. implies either that mitochondria, where (photo)respired CO2 is released, locate between the plasmalemma and the chloroplast continuum or that CO2 in the cytosol is completely mixed. However, the model of Tholen et al. is still valid if ω is replaced by ω(1?σ), where σ is the fraction of (photo)respired CO2 that experiences r ch (in addition to r wp and stomatal resistance) if this CO2 is to escape from being refixed. Therefore, responses of g m,app to (F?+?R d)/A lie somewhere between no sensitivity in the classical method (σ =1) and high sensitivity in the model of Tholen et al. (σ =0).  相似文献   

19.
Stomatal conductance (g s) of mature trees exposed to elevated CO2 concentrations was examined in a diverse deciduous forest stand in NW Switzerland. Measurements of g s were carried out on upper canopy foliage before noon, over four growing seasons, including an exceptionally dry summer (2003). Across all species reductions in stomatal conductance were smaller than 25% most likely around 10%, with much variation among species and trees. Given the large heterogeneity in light conditions within a tree crown, this signal was not statistically significant, but the responses within species were surprisingly consistent throughout the study period. Except during a severe drought, stomatal conductance was always lower in trees of Carpinus betulus exposed to elevated CO2 compared to Carpinus trees in ambient air, but the difference was only statistically significant on 2 out of 15 days. In contrast, stomatal responses in Fagus sylvatica and Quercus petraea varied around zero with no consistent trend in relation to CO2 treatment. During the 2003 drought in the third treatment year, the CO2 effect became reversed in Carpinus, resulting in higher g s in trees exposed to elevated CO2 compared to control trees, most likely due to better water supply because of the previous soil water savings. This was supported by less negative predawn leaf water potential in CO2 enriched Carpinus trees, indicating an improved water status. These findings illustrate (1) smaller than expected CO2-effects on stomata of mature deciduous forest trees, and (2) the possibility of soil moisture feedback on canopy water relations under elevated CO2.  相似文献   

20.
Holtum JA  Winter K 《Planta》2003,218(1):152-158
Do short-term fluctuations in CO2 concentrations at elevated CO2 levels affect net CO2 uptake rates of plants? When exposed to 600 μl CO2 l?1, net CO2 uptake rates in shoots or leaves of seedlings of two tropical C3 tree species, teak (Tectona grandis L. f.) and barrigon [Pseudobombax septenatum (Jacq.) Dug.], increased by 28 and 52% respectively. In the presence of oscillations with half-cycles of 20 s, amplitude of ca. 170 μl CO2 l?1 and mean of 600 μl CO2 l?1, the stimulation in net CO2 uptake by the two species was reduced to 19 and 36%, respectively, i.e. the CO2 stimulation in photosynthesis associated with a change in exposure from 370 to 600 μl CO2 l?1 was reduced by a third in both species. Similar reductions in CO2-stimulated net CO2 uptake were observed in T. grandis exposed to 40-s oscillations. Rates of CO2 efflux in the dark by whole shoots of T. grandis decreased by 4.8% upon exposure of plants grown at 370 μl CO2 l?1 to 600 μl CO2 l?1. The potential implications of the observations on CO2 oscillations and dark respiration are discussed in the context of free-air CO2 enrichment (FACE) systems in which short-term fluctuations of CO2 concentration are a common feature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号