首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1010篇
  免费   101篇
  2023年   5篇
  2021年   14篇
  2020年   10篇
  2019年   10篇
  2018年   17篇
  2017年   17篇
  2016年   31篇
  2015年   44篇
  2014年   56篇
  2013年   70篇
  2012年   84篇
  2011年   70篇
  2010年   39篇
  2009年   40篇
  2008年   55篇
  2007年   61篇
  2006年   58篇
  2005年   52篇
  2004年   59篇
  2003年   43篇
  2002年   46篇
  2001年   13篇
  2000年   8篇
  1999年   12篇
  1998年   16篇
  1997年   12篇
  1995年   12篇
  1994年   4篇
  1993年   7篇
  1992年   5篇
  1991年   5篇
  1989年   8篇
  1988年   7篇
  1987年   7篇
  1986年   6篇
  1984年   6篇
  1982年   4篇
  1981年   4篇
  1979年   8篇
  1976年   3篇
  1974年   4篇
  1972年   3篇
  1969年   5篇
  1966年   7篇
  1961年   3篇
  1960年   3篇
  1937年   3篇
  1936年   4篇
  1935年   4篇
  1931年   3篇
排序方式: 共有1111条查询结果,搜索用时 15 毫秒
1.
A biomarker is a molecular target analyzed in a qualitative or quantitative manner to detect and diagnose the presence of a disease, to predict the outcome and the response to a specific treatment allowing personalized tailoring of patient management. Biomarkers can belong to different types of biochemical molecules such as proteins, DNA, RNA or lipids, whereby protein biomarkers have been the most extensively studied and used, notably in blood-based protein quantification tests or immunohistochemistry. The rise of interest in epigenetic mechanisms has allowed the identification of a new type of biomarker, DNA methylation, which is of great potential for many applications. This stable and heritable covalent modification mostly affects cytosines in the context of a CpG dinucleotide in humans. It can be detected and quantified by a number of technologies including genome-wide screening methods as well as locus- or gene-specific high-resolution analysis in different types of samples such as frozen tissues and FFPE samples, but also in body fluids such as urine, plasma, and serum obtained through non-invasive procedures. In some cases, DNA methylation based biomarkers have proven to be more specific and sensitive than commonly used protein biomarkers, which could clearly justify their use in clinics. However, very few of them are at the moment used in clinics and even less commercial tests are currently available. The objective of this review is to discuss the advantages of DNA methylation as a biomarker, the practical considerations for their development, and their use in disease detection, prediction of outcome or treatment response, through multiple examples mainly focusing on cancer, but also to evoke their potential for complex diseases and prenatal diagnostics.  相似文献   
2.
Some HIV antiretroviral therapies (ART) have been associated with renal toxicities, which become of increasing concern as HIV-infected patients age and develop comorbidities. The objective of this study was to evaluate the relative impact of atazanavir (ATV)-based regimens on the renal function of adult patients with HIV. We conducted a systematic literature review by searching PubMed, EMBASE, Cochrane library, and the CRD from 2000 until March 2013. Major HIV-related conferences occurring in the past two years were also searched. All randomized clinical trials and large cohort studies assessing renal function in treatment-naïve and/or treatment-experienced HIV patients on ATV-based regimens were included. Fixed-effect mixed-treatment network analyses were carried out on the most frequently reported renal outcomes. 23 studies met the inclusion criteria, and change in estimated glomerular filtration rate (eGFR) from baseline to 48 weeks was identified as the main outcome. Two networks including, respectively, six studies (using the Cockcroft-Gault method) and four studies (using MDRD and CKD-EPI) were analysed. With CG network, ATV/r + TDF/FTC was associated with lower impact on the decline of eGFR than ATV/cobicistat + TDF/FTC but with higher decrease in eGFR than ATV/r + ABC/3TC (difference in mean change from baseline in eGFR repectively +3.67 and –3.89). The use of ATV/cobicistat + TDF/FTC led to a similar decline in eGFR as EVG/cobicistat/TDF/FTC. With respect to third agents combined with TDF/FTC, ATV/r had a lower increase in eGFR in comparison to EFV, and no difference was shown when compared to SQV/r and DRV/r. The effect of ATV-based regimens on renal function at 48 weeks appears similar to other ART regimens and appears to be modest regardless of boosting agent or backbone, although TDF containing backbones consistently leads to greater decline in eGFR.  相似文献   
3.
Hepatic infections by hepatitis B virus (HBV), hepatitis C virus (HCV) and Plasmodium parasites leading to acute or chronic diseases constitute a global health challenge. The species tropism of these hepatotropic pathogens is restricted to chimpanzees and humans, thus model systems to study their pathological mechanisms are severely limited. Although these pathogens infect hepatocytes, disease pathology is intimately related to the degree and quality of the immune response. As a first step to decipher the immune response to infected hepatocytes, we developed an animal model harboring both a human immune system (HIS) and human hepatocytes (HUHEP) in BALB/c Rag2-/- IL-2Rγc-/- NOD.sirpa uPAtg/tg mice. The extent and kinetics of human hepatocyte engraftment were similar between HUHEP and HIS-HUHEP mice. Transplanted human hepatocytes were polarized and mature in vivo, resulting in 20–50% liver chimerism in these models. Human myeloid and lymphoid cell lineages developed at similar frequencies in HIS and HIS-HUHEP mice, and splenic and hepatic compartments were humanized with mature B cells, NK cells and naïve T cells, as well as monocytes and dendritic cells. Taken together, these results demonstrate that HIS-HUHEP mice can be stably (> 5 months) and robustly engrafted with a humanized immune system and chimeric human liver. This novel HIS-HUHEP model provides a platform to investigate human immune responses against hepatotropic pathogens and to test novel drug strategies or vaccine candidates.  相似文献   
4.
Factors involved in capillary growth in the heart   总被引:6,自引:0,他引:6  
Growth of capillaries in the heart occurs under physiological circumstances during endurance exercise training, exposure to high altitude and/or cold, and changes in cardiac metabolism or heart rate elicited by modification of thyroid hormone levels. Capillary growth in all these conditions can be linked with increased coronary blood flow, decreased heart rate, or both. This paper brings evidence that, although increased blood flow due to long-term administration of coronary vasodilators results in capillary growth, a long-term decrease in heart rate induced by electrical bradycardial pacing in rabbits and pigs, or by chronic administration of a bradycardic drug, alinidine, in rats, stimulates capillary growth with little or no change in coronary blood flow. Decreased heart rate results in increased capillary wall tension, increased end-diastolic volume and increased force of contraction, and thus stretch of the capillary wall. This could lead to release of various growth factors possibly stored in the capillary basement membrane. Correlation was found between capillary density (CD) and the levels of low molecular endothelial cell stimulating angiogenic factor (ESAF) both in rabbit and pig hearts with CD increased by pacing. There was no relation between expression of mRNA for basic fibroblast growth factor and CD in sham-operated and paced rabbit hearts. In contrast, mRNA for TGFß was increased in paced hearts, and the possible role of this factor in the regulation of capillary growth induced by bradycardia is discussed.  相似文献   
5.
Despite the demonstration of a clear biochemical defect, the genetic alterations causing childhood forms of cytochromec oxidase (COX) deficiency remain unknown. The double genetic origin (nuclear and mitochondrial DNA), and the complexity of COX enzyme structure and regulation, indicate the need for genetic iinvestigations of the molecular structure of individual COX subunits. In the present study a new monoclonal antibody, which reacts exclusively with heart-type human COX subunit VIIa (VIIa-H), and other monoclonal antibodies against human COX subunits, were used in the immunohistochemical analysis of skeletal muscle from children with different forms of mitochondrial myopathy with COX deficiency. By immunohistochemical investigation a normal reaction was seenn with antibodies to COX subunits IV, Va+Vb, and VIa+VIc in all four cases, and in two cases with antibodies to COX VIIa-H and VIIa+VIIb. In muscle from a fatal infantile case with cardiac and skeletal muscle involvement, no immunohistochemical reaction was seen with the monoclonal antibody against the tissue-specific subunit VIIa-H. In muscle from an 11-year-old boy with exclusive muscular symptoms and signs, immunohistological reactions were absent with COX subunit VIIa-H and COX subunits VIIa+VIIb, and slightly decreased with COX subunit II, thus demonstrating a different molecular mechanism in each case. It is concluded that the molecular basis of COX deficiency in childhood may vary greatly between patients.  相似文献   
6.
How adherent and contractile systems coordinate to promote cell shape changes is unclear. Here, we define a counterbalanced adhesion/contraction model for cell shape control. Live-cell microscopy data showed a crucial role for a contractile meshwork at the top of the cell, which is composed of actin arcs and myosin IIA filaments. The contractile actin meshwork is organized like muscle sarcomeres, with repeating myosin II filaments separated by the actin bundling protein α-actinin, and is mechanically coupled to noncontractile dorsal actin fibers that run from top to bottom in the cell. When the meshwork contracts, it pulls the dorsal fibers away from the substrate. This pulling force is counterbalanced by the dorsal fibers’ attachment to focal adhesions, causing the fibers to bend downward and flattening the cell. This model is likely to be relevant for understanding how cells configure themselves to complex surfaces, protrude into tight spaces, and generate three-dimensional forces on the growth substrate under both healthy and diseased conditions.  相似文献   
7.
Hemolymph and soft tissues of Pacific oysters (Crassostrea gigas) kept in sand-filtered seawater at temperatures between 1 and 8°C were normally found to contain bacteria, with viable counts (CFU) in hemolymph in the range 1.4 × 102 to 5.6 × 102 bacteria per ml. Pseudomonas, Alteromonas, Vibrio, and Aeromonas organisms dominated, with a smaller variety of morphologically different unidentified strains. Hemolymph and soft tissues of horse mussels (Modiolus modiolus), locally collected from a 6- to 10-m depth in the sea at temperatures between 4 and 6°C, also contained bacteria. The CFU in horse mussel hemolymph was of the same magnitude as that in oysters (mean, 2.6 × 104), and the bacterial flora was dominated by Pseudomonas (61.3%), Vibrio (27.0%), and Aeromonas (11.7%) organisms. In soft tissues of horse mussels, a mean CFU of 2.9 × 104 bacteria per g was found, with Vibrio (38.5%), Pseudomonas (33.0%), and Aeromonas (28.5%) constituting the major genera. After the challenge of oysters in seawater at 4°C to the psychrotrophic fish pathogen Vibrio salmonicida (strains NCIMB 2245 from Scotland and TEO 84001 from Norway) and a commensal Aeromonas sp. isolated from oysters, the viable count in hemolymph increased 1,000-fold to about 105 bacteria per ml. In soft tissues, about a 1,000-fold increase in CFU to 6 × 107 was observed. V. salmonicida NCIMB 2245 invaded hemolymph and soft tissues after 14 days and dominated these compartments after 41 days, whereas strain TEO 84001 did not invade soft tissues to the same extent. Challenge with V. salmonicida NCIMB 2245 resulted in 100% mortality, whereas about 50% of the oysters survived challenge with the Norwegian strain, TEO 84001. The commensal Aeromonas sp. invaded hemolymph and soft tissues and caused 100% mortality. Oyster hemolymph contained agglutinins for Vibrio anguillarum but not for V. salmonicida, whereas we did not find agglutinins for either of these bacteria in horse mussels. Agglutinins for horse and human erythrocytes were found in hemolymph from both animals. We found no differences in agglutinin titers in oysters from different Norwegian locations, and long-term challenge with bacteria in seawater did not result in changes of agglutinin activity. These studies demonstrate that bacteria exist in hemolymph and soft tissues of marine bivalves at temperatures below 8°C. Increased bacterial numbers in seawater at 4°C result in augmented invasion of bacteria in hemolymph and soft tissues. V. salmonicida, a bacterium pathogenic for fish at low temperatures, invades bivalve hemolymph and soft tissues, and thus bivalves may serve as a reservoir for pathogens of fish at low seawater temperatures.  相似文献   
8.
9.
To explore how cardiac regeneration and cell turnover adapts to disease, different forms of stress were studied for their effects on the cardiac progenitor cell markers c-Kit and Isl1, the early cardiomyocyte marker Nkx2.5, and mast cells. Adult female rats were examined during pregnancy, after myocardial infarction and ischemia-reperfusion injury with/out insulin like growth factor-1(IGF-1) and hepatocyte growth factor (HGF). Different cardiac sub-domains were analyzed at one and two weeks post-intervention, both at the mRNA and protein levels. While pregnancy and myocardial infarction up-regulated Nkx2.5 and c-Kit (adjusted for mast cell activation), ischemia-reperfusion injury induced the strongest up-regulation which occurred globally throughout the entire heart and not just around the site of injury. This response seems to be partly mediated by increased endogenous production of IGF-1 and HGF. Contrary to c-Kit, Isl1 was not up-regulated by pregnancy or myocardial infarction while ischemia-reperfusion injury induced not a global but a focal up-regulation in the outflow tract and also in the peri-ischemic region, correlating with the up-regulation of endogenous IGF-1. The addition of IGF-1 and HGF did boost the endogenous expression of IGF and HGF correlating to focal up-regulation of Isl1. c-Kit expression was not further influenced by the exogenous growth factors. This indicates that there is a spatial mismatch between on one hand c-Kit and Nkx2.5 expression and on the other hand Isl1 expression. In conclusion, ischemia-reperfusion injury was the strongest stimulus with both global and focal cardiomyocyte progenitor cell marker up-regulations, correlating to the endogenous up-regulation of the growth factors IGF-1 and HGF. Also pregnancy induced a general up-regulation of c-Kit and early Nkx2.5+ cardiomyocytes throughout the heart. Utilization of these pathways could provide new strategies for the treatment of cardiac disease.  相似文献   
10.
Mammalian 14-3-3 protein scaffolds include seven conserved isoforms that bind numerous phosphorylated protein partners and regulate many cellular processes. Some 14-3-3-isoforms, notably γ, have elevated affinity for membranes, which might contribute to modulate the subcellular localization of the partners and substantiate the importance of investigating molecular mechanisms of membrane interaction. By applying surface plasmon resonance we here show that the binding to phospholipid bilayers is stimulated when 14-3-3γ is complexed with its partner, a peptide corresponding to the Ser19-phosphorylated N-terminal region of tyrosine hydroxylase. Moreover, membrane interaction is dependent on salts of kosmotropic ions, which also stabilize 14-3-3γ. Electrostatic analysis of available crystal structures of γ and of the non-membrane-binding ζ-isoform, complemented with molecular dynamics simulations, indicate that the electrostatic potential distribution of phosphopeptide-bound 14-3-3γ is optimal for interaction with the membrane through amphipathic helices at the N-terminal dimerization region. In addition, His158, and especially His195, both specific to 14-3-3γ and located at the convex lateral side, appeared to be pivotal for the ligand induced membrane interaction, as corroborated by site-directed mutagenesis. The participation of these histidine residues might be associated to their increased protonation upon membrane binding. Overall, these results reveal membrane-targeting motifs and give insights on mechanisms that furnish the 14-3-3γ scaffold with the capacity for tuned shuffling from soluble to membrane-bound states.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号