首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biomanipulation is a method of controlling algal blooms in eutrophic freshwater ecosystems. The most common approach has been to enhance herbivores through a reduction of planktivorous fish and introduction of piscivorous fish. The method was originally intended to reduce grazing pressure on zooplankton, thereby increasing grazing pressure on phytoplankton to increase water clarity and promote the growth of aquatic macrophytes. Biomanipulation has received considerable attention since it was proposed in 1975 where innovative approaches and explanations of the processes have been developed. Although many successful biomanipulation exercises have been conducted internationally, it has received comparatively little attention in the Southern Hemisphere and has not been trialled in the southern temperate climate of South Australia. This is a review to speculate upon the criteria for and against the application of biomanipulation in southern temperate Australia using the native species Murray cod (Maccullochella peelii peelii) and to suggest future research.  相似文献   

2.
Accurate prediction of species changes in lake ecosystems following biomanipulation measures is of paramount importance in view of water quality management. The temporal variation of phytoplankton biomass as chlorophyll-a and transparency as Secchi depth measurements are studied in the Lake Bleiswijkse Zoom, The Netherlands, with a comprehensive structural dynamic model. In the formulation of the biological model, phytoplankton as several species, zooplankton, detritus, planktivores and benthivores, and piscivores are considered to be major contributing state variables for the model. The primary goal of this paper is to describe the possible impacts of several environmental scenarios on chlorophyll-a biomass qualitatively as it would help lake and environmental managers and relevant authorities elucidate the processes of eutrophication and biomanipulation in a broad way. Some of the scenarios that have been studied by this model are: (1) The effect of fixed stoichiometry in terms of internal nitrogen and phosphorus that are tied up within algal cells; (2) the effects of external phosphorus limitation; (3) light limitation and external nitrogen limitation on algal growth; (4) probable consequences that have taken place within the chlorophyll-a biomass due to change in biomasses of various aquatic organisms; and (5) possible changes of chlorophyll-a biomass due to higher temperatures caused by global warming.  相似文献   

3.
Degans  Hanne  De Meester  Luc 《Hydrobiologia》2002,479(1-3):39-49
Biomanipulation, through the reduction of fish abundance resulting in an increase of large filter feeders and a stronger top-down control on algae, is commonly used as a lake restoration tool in eutrophic lakes. However, cyanobacteria, often found in eutrophic ponds, can influence the grazing capacity of filter feeding zooplankton. We performed grazing experiments in hypertrophic Lake Blankaart during two consecutive summers (1998, with and 1999, without cyanobacteria) to elucidate the influence of cyanobacteria on the grazing pressure of zooplankton communities. We compared the grazing pressure of the natural macrozooplankton community (mainly small to medium-sized cladocerans and copepods) with that of large Daphnia magna on the natural bacterioplankton and phytoplankton prey communities. Our results showed that in the absence of cyanobacteria, Daphnia magna grazing pressure on bacteria was higher compared to the grazing pressure of the natural zooplankton community. However, Daphnia grazing rates on phytoplankton were not significantly different compared to the grazing rates of the natural zooplankton community. When cyanobacteria were abundant, grazing pressure of Daphnia magnaseemed to be inhibited, and the grazing pressure on bacteria and phytoplankton was similar to that of the natural macrozooplankton community. Our results suggest that biomanipulation may not always result in a more effective top-down control of the algal biomass.  相似文献   

4.
Torras  X.  Cardona  L.  Gisbert  E. 《Hydrobiologia》2000,429(1-3):49-57
Flathead grey mullet (Mugil cephalus L.) stocked in fish ponds were long considered to feed primarily on detritus. However, recent research has found that they obtain much of their food from plankton and that they have a detrimental effect on pond zooplankton and large phytoplankton, whilst enhancing small phytoplankton. It has been suggested that flathead grey mullet may also increase the internal phosphorus loading of the ecosystem, which would also increase phytoplankton density. To test whether zooplankton removal or nutrient release from the sediment is the better explanation for phytoplankton enhancement in the presence of flathead grey mullet, the ecosystems of fish-less tanks, tanks with a 60 m mesh filter and tanks stocked at a fish density of 243 g m-3 were compared. In the presence of flathead grey mullets, cladocerans, ostracods and chironomid larvae became scarcer than in the control tanks, while there were more small phytoplankton and mud snails. The green algae Cladophora sp. did not occur at all. The presence of a mechanical filter also reduced cladoceran, ostracod and chironomid densities and increased phtyoplankton and mud snail density. However, the situation observed in filter tanks was intermediate between that observed in the fish tanks and the control tanks, due to the lower filtering efficiency of the mechanical filter. The organic matter content of the sediment decreased throughout the experiment in the control and filter tanks, but remained stable in fish tanks. Phosphorus and nitrogen concentrations were not affected by any treatment. These results showed that flathead grey mullet enhanced phytoplankton development due to the removal of large cladocerans and not as a consequence of nutrient release. Furthermore, the flathead grey mullet strongly modified the benthic community, probably due to direct predation.  相似文献   

5.
Relationships between phytoplankton and periphyton communities were investigated in a central Iowa stream. Results generally support the hypothesis that the phytoplankton community arises from the epipelic periphyton community. A high correlation existed between the proportion of benthic diatoms composing the epipelon and phytoplankton. One dominant epipelic species (Nitzschia acicularis) showed a greater tendency to become planktonic than the grouped remainder of Nitzschia spp. There was a significant inverse relationship between the proportion of centric diatoms in the plankton and volume of flow. Centric diatoms were important members of the plankton only when volume of flow was less than 60 ft3 / sec (2.1 m3 / sec). Possible mechanisms explaining these phenomena are discussed.This study represents a portion of a dissertation submitted to the Graduate College, Iowa State University in partial fulfillment of requirements for the degree Doctor of Philosophy.  相似文献   

6.
镉离子污染条件下微生物群落中细菌与藻类的相互作用   总被引:1,自引:0,他引:1  
【背景】水体微生物有着丰富的多样性,不同种类的微生物之间的相互作用对水体生态系统的组成结构与功能具有重要影响。水体内的藻类与某些微生物可以发生多种相互作用,然而人们对逆境条件下的菌藻有益相互作用尚缺乏深入研究。【目的】为了研究镉对水体微生物群落的影响以及镉胁迫下菌藻之间可能的相互作用。【方法】本研究运用了基于16S rRNA基因的高通量测序技术,分析在不同Cd~(2+)条件下微生物群落结构的变化,利用微生物相互作用网络分析菌藻之间可能发生的相互作用。【结果】通过分离培养筛选出了与集胞藻PCC6803互作抗Cd~(2+)的关键细菌Y9菌株。【结论】研究结果表明Y9菌株属于Phyllobacteriaceae科,与微生物群落组成和微生物互作网络的分析结果相符。本研究为探索水体环境中微生物种间相互作用、菌藻互作抗Cd~(2+)的生态效应提供参考依据。  相似文献   

7.
Long-term changes in Secchi disk transparency in Lake Nakaumi, Japan, from 1932 to the present, which includes the periods before and after the loss of eelgrass (Zostera marina L.) beds, were compiled from previous reports. During the first (July 1932–February 1934) and the second (January 1949–November 1950) periods, the mean transparency was greater than 3 m at all observed stations. Data during the third period (July 1954–March 1956) are only available for the station at the center of the lake. The mean transparency during the third period was significantly lower than that of the second period but higher than the mean during the fourth period. This observation suggests that the decrease of transparency occurred during the third period. Because the decline of eelgrass beds in Lake Nakaumi occurred in the mid-1950s, the decrease of transparency most likely resulted from the shift in primary producers from submerged macrophytes to phytoplankton. Although the maximum transparency sometimes exceeded 3 m, mean transparencies during the fourth period (May 1975–December 2003) were less than 2 m at all stations, significantly lower than those during the first and second periods. The shift in the chief primary producer, from benthic macrophytes to phytoplankton, caused a subsequent shift in secondary producers. The opportunistic filter-feeding bivalve Musculista senhousia, regarded as a biofouling species of local fisheries, increased in Lake Nakaumi. The long-term monitoring data of transparency suggested that restoration of submerged aquatic vegetation may be indispensable for the remediation of the lake environment in this shallow eutrophic lagoon.  相似文献   

8.
Employingin situ enclosures containing inocula of the lake zooplankton (mainlyDaphnia galeata, Daphnia cucullata andBosmina spp.) from a moderately eutrophic Lake Ros (Northern Poland) or large-bodiedDaphina magna, the following observations on succession of phytoplankton were made: 1) whereasD. magna could control the density of all the photoplankton size classes, the lake zooplankton could not suppress the large-sized phytoplankters or net phytoplankton; 2) the lake zooplankton was able to control the density of small algae (< 50μm), but its effect on large algae may be opposite: a promotion of net phytoplankton growth by removing small-sized algae which can out-compete net phytoplankton for limited PO4-P resources (<5μg P l−1). Since efficiency of phytoplankton density control byD. magna decreased with an increase in net phytoplankton abundance, biomanipulation could not be successful without introducing or maintaining a high population of large-bodied cladoceran species before high densities of large algae would make the control of phytoplankton inefficient.  相似文献   

9.
Silver and bighead carp were stocked in a large pen to control the nuisance cyanobacterial blooms in Meiliang Bay of Lake Taihu. Plankton abundance and water quality were investigated about once a week from 9 May to 7 July in 2005. Biomass of both total crustacean zooplankton and cladocerans was significantly suppressed by the predation of pen-cultured fishes. There was a significant negative correlation between the N:P weight ratio and phytoplankton biomass. The size-selective predation by the two carps had no effect on the biomass of green alga Ulothrix sp. It may be attributed to the low fish stocking density (less than 40 g m−3) before June. When Microcystis dominated in the water of fish pen, the pen-cultured carps effectively suppressed the biomass of Microcystis, as indicated by the significant decline of chlorophyll a in the >38 μm fractions of the fish pen. Based on the results of our experiment and previous other studies, we conclude that silver and bighead carp are two efficient biomanipulation tools to control cyanobacterial (Microcystis) blooms in the tropical/subtropical eutrophic waters. Moreover, we should maintain an enough stocking density for an effective control of phytoplankton biomass.  相似文献   

10.
Why do cladocerans fail to control algal blooms?   总被引:26,自引:19,他引:7  
Field studies show that even at high nutrient loads phytoplankton may be kept at low levels by filter-feeding zooplankton for a period of weeks (spring clear water phase in lakes) or months (low-stocked fish-ponds). In the absence of planktivorous fish, large-bodied cladocerans effectively control the abundance of algae of a broad size spectrum. Laboratory experiments show that, although difficult to handle and of poor nutritional value, filamentous algae can also be utilized by large-bodiedDaphnia and prevented from population increase, exactly as the principles of the biomanipulation approach would predict. This is not always the case, however. Even when released from predation, large cladocerans often cannot grow and reproduce fast enough to prevent bloom formation. Sometimes, they disappear when the bloom becomes dense, and the biomanipulation approach is not applicable any more. Recent experimental data on four differently-sizedDaphnia species are used in an attempt to (1) explain why cladocerans fail to control filamentous cyanobacteria when filament density is high, and (2) determine the critical filament density at whichDaphnia becomes ineffective. At this critical concentration,Daphnia growth and reproduction is halted, and no positive numerical response to growing phytoplankton standing crop should be expected fromDaphnia population. Bloom formation thus becomes irreversible. The question of what can be done to overcome this bottleneck of the biomanipulation approach may become one of the most challenging questions in plankton ecology in the nearest future.  相似文献   

11.
Gizzard shad (Dorosoma cepedianum), a filter feeding omnivore, can consume phytoplankton, zooplankton and detritus and is a common prey fish in U.S. water bodies. Because of their feeding habits and abundance, shad have the potential to affect primary productivity (and hence water quality) directly through phytoplankton grazing and indirectly through zooplankton grazing and nutrient recycling. To test the ability of shad to influence primary productivity, we conducted a 16-day enclosure study (in 2.36-m3 mesocosms) and a 3-year whole-pond manipulation in 2–5 ha earthen ponds. In the mesocosm experiment, shad reduced zooplankton density and indirectly enhanced chlorophyll a concentration, primary productivity, and photosynthetic efficiency (assimilation number). While shad did not affect total phytoplankton density in the mesocosms, the density of large phytoplankton was directly reduced with shad. Results from the pond study were not consistent as predicted. There were few changes in the zooplankton and phytoplankton communities in ponds with versus ponds without gizzard shad. One apparent difference from systems in which previous work had been conducted was the presence of high densities of a potential competitor (i.e., larval bluegill) in our ponds. We suggest that the presence of these extremely high larval bluegill densities (20–350 larval bluegill m–3; 3–700 times higher density than that of larval gizzard shad) led to the lack of differences between ponds with versus ponds without gizzard shad. That is, the influence of gizzard shad on zooplankton or phytoplankton was less than the influence of abundant bluegill larvae. Differences in systems across regions must be incorporated into our understanding of factors affecting trophic interactions in aquatic systems if we are to be able to manage these systems for both water quality and fisheries.  相似文献   

12.
Mátyás  Kálmán  Oldal  Imre  Korponai  János  Tátrai  István  Paulovits  Gábor 《Hydrobiologia》2003,504(1-3):231-239

Effects of different fish communities on the proportion of different nitrogen and phosphorous forms and the amount of phytoplankton (chlorophyll a) were examined in two consecutive years (1992–1993) in three Hungarian shallow water reservoirs (Cassette and outer reservoir of the Kis–Balaton Water Protection System, and Marcali reservoir). Possible interactions between nutrient concentrations and the amount of phytoplankton in these reservoirs were also examined. Considerable differences in the proportions of different nutrient forms were observed between the three test sites, which could be explained by the presence of different fish stocks in these reservoirs. In the Cassette, the fish biomass necessary for a water quality improvement was around 50 kg ha−1. Phytoplankton biomass was controlled by the zooplankton, consequently chlorophyll a concentrations decreased considerably, while those of dissolved nutrients significantly increased. In the outer reservoir, phytoplankton was controlled bottom-up, since the 250 kg ha−1 fish biomass was larger than the critical value due to the high proportion of planktivorous species. Chlorophyll a concentrations were high, and nutrients were mainly in particulate form (in algal cells). In the Marcali reservoir, the recently introduced silver carp population could not control fully the phytoplankton. The biomass of phytoplankton decreased only slightly, while its composition changed considerably. Although biomanipulation with silver carp is suitable for ceasing cyanobacterial blooms, reduction of the amount of planktivorous fish seems to be a more adequate method for increasing water transparency, rather than introduction of phytoplankton feeding fish.

  相似文献   

13.
Freshwater crayfish are key members of aquatic communities due to their large size and abundance. Although most commonly regarded as herbivores and detritivores, they are also selective predators. The crayfish plague fungus Aphanomyces astaci (Schikora) led to the elimination of a stock of white-clawed crayfish, Austropotamobius pallipes (Lereboullet) from Lough Lene, Co. Westmeath, in 1987. Samples taken of the flora and benthic communities of two Irish lakes, one (Lough Bane) formerly containing crayfish and the other (Lough Lene) immediately following a plague outbreak, were compared to similar samples taken a year later and ecological shifts were noted and compared to laboratory feeding results. Over time, Chara strands increased in mean length, and molluscs became more abundant.  相似文献   

14.
赵文倩  刘振中  郭文莉  周忠泽 《生态学报》2023,43(13):5558-5570
浅水湖泊生态系统正遭受广泛而强烈的人为干扰,但是对收割水生植物干扰的研究甚少。于2019年8月对芡实过度生长的陈瑶湖进行通道式分区收割工程,分析了收割芡实(Euryale ferox)前后不同处理组浮游植物群落的变化。研究期间共鉴定出浮游植物6门47属72种,其中收割前63种,收割后71种。收割后浮游植物的细胞密度和生物量均高于收割前,分别增加了39.78%和5.09%。收割芡实导致陈瑶湖浮游植物群落为由蓝藻-绿藻-硅藻-隐藻群落转变为蓝藻-绿藻-硅藻群落。其中蓝藻细胞密度和生物量显著高于收割前(P<0.05),归因于有害蓝藻(铜绿微囊藻Microcystis aeruginosa、水华束丝藻Aphanizomenon flos-aquae、小颤藻Oscillatoria tenuis、卷曲鱼腥藻Dolicospermum circinale、小席藻Phormidium tenu)的增加。收割还导致了硅藻群落由附生型向浮游型硅藻的转变,表现为尖针杆藻(Ulnaria acus)减少,而颗粒直链藻极狭变种(Aulacoseira granulata var.angustissima)、梅尼小环藻(Cyclotella meneghiniana)增加。在芡实收割过程中,未收割组和河道的浮游植物群落结构在时空分布上无显著性差异(P>0.05),但收割组在收割后的不同阶段内差异较为明显,其细胞密度和生物量随着收割实验的结束逐渐降低。浮游植物与环境因子的相关性分析表明,水生植被覆盖度、总磷、总氮、溶解氧和叶绿素a浓度是影响浮游植物细胞密度和生物量变化的主要环境因子。综合陈瑶湖水质状态,本研究认为收割芡实并不能缓解浅水湖泊富营养化状况,研究结果为浅水湖泊水生植被的管理提供理论依据。  相似文献   

15.
M. Tackx  P. Polk 《Hydrobiologia》1982,94(2):131-133
Feeding experiments in which the zooplankton fraction of the Sluice-dock smaller than 200 μm is offered to Acartia tonsa, the dominant calanoid of this biotope, show that it feeds on the nauplii of Canuella perplexa, the dominant benthic harpacticoid. The ecological implications of this carnivorous feeding, occurring in the presence of natural phytoplankton concentrations, are briefly discussed.  相似文献   

16.
The aquatic larvae of two simuliid species, Austrosimulium furiosum (Skuse) and Simulium ornatipes Skuse, which often occur together in Victorian streams, were shown in laboratory experiments to have preferences for different water velocities: larvae of A. furiosum preferred water velocities of 0.2–0.3 m s–1, and S. ornatipes preferred water velocities of 0.9–1.3 m s –1 . Final instar larvae of both species selected slow water speeds of less than 0.25 m s –1 prior to pupation. Flow patterns around a cylinder in a laboratory stream were mapped, and the distribution of A. furiosum larvae within the wake, paired vortices and horseshoe vortex was recorded. Larvae selected areas with suitable water velocities and aligned with the flow, providing flow visualization of micro-current speed and direction. The potential for micro-habitat partitioning is discussed in relation to benthic sampling strategies.  相似文献   

17.
The Mediterranean population of the exotic eastern mosquitofish Gambusia holbrooki (Agassiz 1859) (Osteichthyes, Poeciliidae) has been held responsible for causing eutrophication due to zooplankton removal and phytoplankton enhancement, however no experimental evidence exists of this. To test this allegation, an enclosure experiment was conducted in spring in an oligohaline coastal marsh. The manipulation of fish density had profound effects on zooplankton, whose density greatly decreased when the occurrence of mosquitofish increased. Cladocerans and ostracods were more affected by mosquitofish than cyclopoid copepods, whilst rotifer density was not modified. Changes in zooplankton density did not cascade to lower trophic levels as no differences were observed between the chlorophyll concentration in fish and fish-less enclosures. This is because zooplankton was dominated by species with low filter-feeding rates, such as small cladocerans. In consequence, the total macrophyte standing crop was not affected. The only benthic macroinvertebrate species whose density increased in the absence of eastern mosquitofish was the mud snail P. acuta. Higher numbers of snails explain why the standing crop of the filamentous green algae Oedogonium sp. decreased in fish-less enclosures. The density of chironomid midge larvae did not increase in fish-less enclosures, because eastern mosquitofish forage on them mainly during summer, when zooplankton has already been depleted; nor were damselflies, probably because they are too large. Nitrogen concentration decreased after fish exclusion, but phosphorus concentration remain unchanged. In conclusion, it was found that the eastern mosquitofish affect zooplankton of the Mediterranean oligohaline lagoons considerably, but they do not enhance phytoplankton growth, because the system is bottom-controlled by submerged macrophytes.  相似文献   

18.
In order to aid the study of photoacclimation, a new programmable deviceis described which provides automatic on-line acquisition of in vivo cellabsorption in phytoplankton cultures. The system was used for a long-termstudy of Rhodomonas salina grown at constant photon flux density ina nitrate-limited continuous culture with different dilution rates. Particulate absorption measured at the red chlorophyll a (Chl a)maximum was not a good proxy of biomass, because of the large variabilityof cellular chlorophyll induced by nitrogen limitation. However, thedevice is well suited to automatic assessment of Chl a andphycoerythrin (PE) concentrations in phytoplankton cultures, if algal cellsize and concentration are measured in parallel to correct the packagingeffect. The effects of nitrogen limitation on Chl a and PE contentsand particle absorbance are discussed.  相似文献   

19.
Runge  J. A. 《Hydrobiologia》1988,(1):61-71
It is frequently put forward that variability in fisheries productivity is related to interannual variation in physical processes affecting phytoplankton productivity. Here, alternative views of the role of copepods as an intermediary link in North Atlantic marine food chains are discussed. Following Bainbridge & McKay (1968) and Cushing (1982), a strong link between phytoplankton and fisheries variability is proposed for some fish stocks, like cod and redfish, that spawn in spring in regions where Calanus finmarchicus dominates the plankton. Otherwise, in regions where small copepods and other microzooplankton dominate the prey field productivity for larval fish, a weak link is proposed. Experimental studies, including laboratory observations of copepod reproductive response to food concentration and incubation techniques for measuring in situ reproductive rates, are important for understanding how copepod dynamics may filter year-to-year differences in phytoplankton production cycles.  相似文献   

20.
Symbiotic dinoflagellates in marine Cnidaria: diversity and function   总被引:1,自引:0,他引:1  
Dinoflagellates of the genus Symbiodinium are the most common symbiotic algae in benthic marine Cnidaria. This review addresses our current understanding of the molecular diversity of Symbiodinium and the function of these algae in symbiosis. Ribosomal DNA sequence data indicate that Symbiodinium is a diverse but probably monophyletic group. They also provide a phylogenetic framework for the analysis of the functional diversity of Symbiodinium (i.e. the variation in phenotype among various Symbiodinium genotypes), especially in relation to their nutritional role in the symbiosis. Symbiodinium provides the animal host with photosynthetic carbon and may also recycle animal nitrogenous waste. These interactions are advantageous to animals in shallow, oligotrophic waters. Recent developments in understanding of both photosynthate release and nitrogen relations in the symbiosis are reviewed. They provide the basis to explore the variation in nutritional interactions among different Symbiodinium genotypes. This review highlights areas of current uncertainty and controversy and addressess possible fulture directions of research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号