首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
为了探明不同茶梅品种花朵挥发性成分的差异,该研究采用固相微萃取和气相色谱-质谱联用技术,分析了6个茶梅品种花朵挥发性成分及其相对含量。结果表明:‘冬星’挥发性成分为29种,‘小玫瑰’24种,‘冬玫瑰’42种,‘昭和之荣’25种,‘新乙女’31种;5种茶梅品种花朵挥发性成分及相对含量有较大差异,但其主体特征成分均为苯乙酮、顺式-芳樟醇氧化物及芳樟醇;成分分类以醛酮类和醇类为主。完全重瓣型茶梅‘富士之峰’挥发性成分为21种;主体特征成分分别是顺式-芳樟醇氧化物、丁香醇、环己酮和十四烷;成分分类以醇类为主,其次为烷烃类。不同茶梅品种花朵挥发性成分化合物种类和相对含量差异较大;雄蕊、花瓣是挥发性成分释放的主要部位。  相似文献   

2.
菊花不同花期及花序不同部位香气成分和挥发研究   总被引:2,自引:0,他引:2       下载免费PDF全文
以切花菊品种‘神马’为试材,采用顶空-固相微萃取和气相色谱-质谱联用(GC/MS)技术,分别测定菊花不同花期及花序不同部位的香气成分种类和含量,并利用生物显微镜观察花瓣的表皮细胞和横切面组织细胞的结构特征。结果表明:(1)菊花花蕾期共检测到香气成分24种,始花期31种,盛花期43种,终花期22种;随着花朵的开放和凋谢,酮类、萜烯类和醇类化合物的含量呈先上升后下降的趋势,在盛花期含量达到最高,而酯类、醛类和杂环类化合物则呈持续下降的趋势。(2)盛花期,在舌状花中共检测到香气成分种类31种,在管状花中共检测到50种;舌状花对菊花香气的贡献比管状花大;菊花舌状花由内轮向外轮香气成分种类变化不大,但是同类香气成分含量的变化出现由内轮向外轮逐渐减少的趋势。(3)异环柠檬醛、桉叶醇、α-蒎烯、β-金合欢烯和石竹烯等化合物可能为菊花的主要特征香气成分。(4)显微观察结果表明:舌状花的香气可能是通过表皮细胞间隙释放的,上表皮是菊花释放香气的主要部位。  相似文献   

3.
不同花期厚朴雌雄蕊和花瓣香气组成成分的分析和比较   总被引:1,自引:0,他引:1  
采用固相微萃取和GC-MS技术,对初花期、展瓣期、盛花期和盛花末期厚朴(Magnolia officinalis Rehd.et Wils.)雌雄蕊和花瓣香气的组成成分及其相对含量进行了分析和比较.结果表明:不同花期厚朴雌雄蕊和花瓣香气的组成成分及其相对含量差异明显.雌雄蕊和花瓣香气分别含有52和37种成分,总计67种;其中,1-甲氧基-3,7-二甲基-2,6-辛二烯、1-香叶基乙醚、D-柠檬烯、莰烯、月桂烯和石竹烯等成分的相对含量均较高.初花期、展瓣期、盛花期和盛花末期雌雄蕊香气分别含有26、26、27和24种成分,花瓣香气则分别含有22、19、16和21种成分;不同花期雌雄蕊和花瓣香气的共有成分为1-甲氧基-3,7-二甲基-2,6-辛二烯、D-柠檬烯和石竹烯.不同花期厚朴雌雄蕊和花瓣香气成分可分为萜烯类、醇类、芳香烃类、醚类、醛酮类、酯类、烷烃类和含氮类8类,共有类型为萜烯类和醇类,其中,萜烯类是主要组成成分.厚朴雌雄蕊和花瓣在不同花期均释放出较多的萜烯类化合物,其相对含量随着花的发育呈先升高后降低的趋势.根据感官分析与GC-MS分析结果综合判断:萜烯类化合物是组成厚朴花香气的重要成分;花瓣是香气释放的主要部位,而雌雄蕊则在香气释放过程中起辅助作用.  相似文献   

4.
仇硕  郑文俊  夏科  唐凤鸾  赵健  丁莉  赵志国 《广西植物》2019,39(11):1482-1495
为了探究细茎石斛花朵释放的挥发性成分特点,该研究利用固相微萃取(SPME)法结合GC-MS技术,检测了花色为黄绿的细茎石斛花朵不同花期、不同部位的挥发性成分和相对含量,还比较了黄绿色、白色和白色带淡紫色等三种花色的挥发性成分。结果表明:花色黄绿的细茎石斛花朵挥发性化合物成分总计为59种,其中盛花期最复杂(含有41种),这些成分归属于烯类、芳香族化合物、含氮化合物、酯类、醇类和醛酮类。在不同花期检测到的挥发性成分中,(1R)-(+)-α蒎烯相对含量始终最高,保持在27%以上;始花期和盛花期释放且相对含量较高的成分有顺-芳樟醇氧化物、β-水芹烯、柠檬烯、罗勒烯、(1S-cis)-4,7-二甲基-1-(1-甲基乙基)-1,2,3,5,6,8α-六氢萘和乙酸芳樟酯,相对含量均高于5%;衣兰烯于花蕾期相对含量最高,衰落期消失。这8种化合物可能是细茎石斛花香释放的主要香气成分或特征成分。在花色黄绿的细茎石斛盛开期的两个开花部位中,花瓣的挥发性成分有27种,蕊柱17种,其中烯类物质分别占74.16%和79.06%,花瓣可能是细茎石斛主要的释香部位。三个花色的细茎石斛盛花期挥发性化合物均在40种左右,既有成分的差异又有含量的差别,其中有25种为共同含有,三个花色均是(1R)-(+)-α蒎烯相对含量最高,含量在27%左右。这表明烯类物质是影响细茎石斛花香的重要化合物,不仅对细茎石斛产品开发提供了参考,而且还为其花香基因工程育种奠定了基础。  相似文献   

5.
采用顶空固相微萃取法(HS-SPME)提取了山茶品种‘克瑞墨大牡丹’不同花器官自然挥发的花香挥发油,并用气相色谱—质谱联用仪(GC-MS)分析了花香成分。分别从整花、花瓣、雄蕊中检测到了89、80、21种化合物。花香成分主要由萜类、芳香族化合物、脂肪族化合物等组成,其中以单萜中的芳樟醇相对含量最高,以下依次为顺式氧化芳樟醇、水杨酸甲酯、十四烷等。花瓣和雄蕊中花香成分有较大差别,芳樟醇在花瓣和雄蕊中均占首位,相对含量分别为15.12%和63.97%,雄蕊缺乏烷烃和芳香烃。同一朵花所有花瓣的花香绝对挥发量是所有雄蕊的3倍以上,但质量相同时雄蕊的挥发量却明显高于花瓣,表明花瓣和雄蕊对‘克瑞墨大牡丹’的花香具有同样重要的贡献。  相似文献   

6.
采用顶空固相微萃取法(HS-SPME)提取了山茶品种‘克瑞墨大牡丹’不同花器官自然挥发的花香挥发油,并用气相色谱—质谱联用仪(GC-MS)分析了花香成分。分别从整花、花瓣、雄蕊中检测到了89、80、21种化合物。花香成分主要由萜类、芳香族化合物、脂肪族化合物等组成,其中以单萜中的芳樟醇相对含量最高,以下依次为顺式氧化芳樟醇、水杨酸甲酯、十四烷等。花瓣和雄蕊中花香成分有较大差别,芳樟醇在花瓣和雄蕊中均占首位,相对含量分别为15.12%和63.97%,雄蕊缺乏烷烃和芳香烃。同一朵花所有花瓣的花香绝对挥发量是所有雄蕊的3倍以上,但质量相同时雄蕊的挥发量却明显高于花瓣,表明花瓣和雄蕊对‘克瑞墨大牡丹’的花香具有同样重要的贡献。  相似文献   

7.
王洁  杨志玲  杨旭 《植物研究》2012,32(2):237-242
以厚朴野生种和栽培种苞片刚裂开的花苞为试材,采用固相微萃取和气相色谱—质谱(GC/MS)分析技术对其进行香气成分和相对含量的测定,比较分析了花朵不同部位香气成分的差异。结果表明:厚朴野生种共有39种香气成分,雌雄蕊中26种,花瓣中22种,栽培种中75种香气成分,雌雄蕊中49种,花瓣中54种。萜烯类是两种厚朴花苞中最重要的香气化合物,莰烯、罗勒烯异构体混合物、石竹烯、芳樟醇是野生种和栽培种中共有的相对含量较高的香气成分。厚朴野生种和栽培种间以及同种厚朴雌雄蕊与花瓣之间的香气成分的种类和相对含量差异显著。  相似文献   

8.
为了解我国4种名优红茶挥发性成分的异同,采用全自动顶空固相微萃取结合气相色谱-质谱分析,对滇红、祁红、正山小种和金骏眉的挥发性成分进行了研究。结果表明,4种红茶中共鉴定出挥发性成分90种,滇红茶中主要是芳樟醇、香叶醇、芳樟醇氧化物、水杨酸甲酯、2-戊基呋喃和橙花叔醇,祁红中主要是十六碳酸、植酮、香叶醇、芳樟醇氧化物、β-紫罗酮、植醇和蒽等,正山小种中主要是植酮、香叶醇、β-紫罗酮、二氢猕猴桃内酯、咖啡因和芳樟醇氧化物,而金骏眉中主要是香叶醇、咖啡因、芳樟醇氧化物、β-紫罗酮、苯乙醇、橙花叔醇和植醇;他们共同成分有苯甲醛、苯乙醛、芳樟醇氧化物、芳樟醇、香叶醇、α-紫罗酮、β-紫罗酮、植醇等。4种红茶在挥发性组成及含量上差异较大,共有成分仅32种;醇类化合物含量均较高,其中滇红茶中醇类化合物含量高达69.08%;而祁红、正山小种和金骏眉中酮类化合物含量较高。不同化合物之间比例和阈值的不同,形成了4种红茶各自独特的香气特征。  相似文献   

9.
4种石斛属植物花朵挥发性成分分析   总被引:1,自引:0,他引:1  
为了解石斛属植物花朵中的挥发性成分, 利用固相微萃取(SPME)方法结合GC-MS 技术测定了鼓槌石斛、罗河石斛、细叶石斛和密花石斛盛花期的花朵挥发性成分及其相对含量。结果表明, 从4 种石斛属植物花朵中共鉴定出挥发性成分57 种, 包括酯类、萜烯类、醇类、烷类、醛类、酮类、醌类、芳香族和含氮化合物。4 种石斛花朵挥发性成分的组成和含量差异明显。鼓槌石斛和细叶石斛的主要香气成分是3-蒈烯, 相对含量分别为84.606% 和71.251%。罗河石斛挥发性成分中水杨酸甲酯相对含量最高(57.449%), 其次为D-柠檬烯(22.416%)。密花石斛花朵主要挥发性成分是2-亚甲基-4,8,8-三甲基-4-乙烯基-双环[5.2.0]壬烷(82.013%), 其次为α-法尼烯(4.699%)。这些对于香型石斛兰品种的培育和兰花精油产品开发提供了参考。  相似文献   

10.
该研究采用顶空固相微萃取—气相色谱/质谱联用技术,对六堡本地三种茶树花的香气成分进行了分析。结果表明:大叶种茶树花中共鉴定出香气成分37种,主要为苯乙酮、4-甲基-1,5-庚二烯、苯甲酸甲酯、愈创木二烯、顺式芳樟醇氧化物、雪松烯、水杨酸甲酯、D-杜松烯、1-氨基-环戊醇、除虫菊酮,占总相对含量的89.48%;中叶种共鉴定出32种成分,主要为苯乙酮、紫苏烯、顺式-3-蒈烯、顺式α-榄香烯、苯甲酸乙酯、塞瑟尔烯、α-蒎烯、新丁香三环烯、衣兰烯、顺式芳樟醇氧化物,占总相对含量的83.88%;小叶种的茶树花中共鉴定出45种香气成分,主要为苯乙酮、紫苏烯、罗勒烯、顺式α-榄香烯、2-异丙基-5-甲基-9-亚甲基-二环[4.4.0]癸-1-烯、荜澄茄油烯醇、α-菖蒲二烯、α-红没药烯、衣兰烯、苯甲酸乙酯、白菖油萜和α-杜松烯,占总相对含量的82.34%。苯乙酮为三种茶树花共有的主要成分,分别占总相对含量的60.70%、42.46%和39.91%,这成分与其他成分一起构成了3个品种明显不同的茶树花花香。该研究结果为六堡茶树花的深加工提供了依据。  相似文献   

11.
利用顶空固相微萃取结合气相色谱-质谱联用技术对盛花期的香花秋海棠(Begonia handelii)雄花及其变种铺地秋海棠(B. handelii var. prostrata)雌花和红毛香花秋海棠(B. handelii var. rubropilosa)雄花的挥发性香气成分进行分析。结果表明,从铺地秋海棠花中鉴定出香气成分32 种,其中醇类物质含量最高,占总成分50.10,其次分别为碳氢类、醛类和酸类物质,分别占总成分25.39、13.87、4.34;从香花秋海棠花中鉴定出香气成分为21种,醛类物质含量最高,占总成分57.12,其次是醇类、碳氢类、杂环类物质,分别占总成分17.37、15.31、4.88;从红毛香花秋海棠花中鉴定出香气成分44 种,醇类物质含量最高,占总成分38.22,其次是碳氢类、醛类和醚类物质,分别占总成分34.36、16.83、6.91。铺地秋海棠和红毛香花秋海棠香气成分较接近,富含具有清香、甘甜气息的芳樟醇氧化物等物质;香花秋海棠花中醛类物质含量最高,具有淡焦甜香气。  相似文献   

12.
皇菊花发育过程中挥发油化学成分及其抗氧化活性的研究   总被引:2,自引:0,他引:2  
通过气相色谱-质谱联用技术鉴定分析了皇菊花发育过程中的挥发油成分,以峰面积归一化法进行了定量分析,同时运用紫外分光光度计测定其对DPPH自由基清除能力。结果表明:皇菊花在不同发育时期的挥发油成分及含量差异明显,现蕾期、初绽期、盛花期和末花期分别鉴定出40、43、45和35种化学成分,共鉴定出67种化学成分,包括烯烃类(36种)、醇类(18种)、酮类(2种)、酯类(4种)、醛类(3种)及氧化物类(4种)化合物,他们之间的共有成分有22种,特有成分现蕾期(5种)、初绽期(6种)、盛花期(8种)和末花期(5种)。4个不同发育时期的烯烃类、醇类、酮类和酯类化合物的含量均较高,是主要的挥发油成分,但化合物种类和含量存在较大差异;皇菊花挥发油对DPPH自由基的清除能力强于Vc,其清除自由基的能力显示出良好的抗氧化活性。  相似文献   

13.
以盛花期的西藏虎头兰花为试材,采用手动固相微萃取(SPME)结合气相色谱一质谱联用(GC-MS)技术测定其一天内不同时间及不同花器官释放的花香成分及其相对含量。一天中三个时间点10∶00、14∶00和18∶00的西藏虎头兰花香分别鉴定出88种、87种和83种化合物,在花器官花瓣、唇瓣和合蕊柱中分别鉴定出72种、66种和62种化合物;包括醛类、醇类、酮类、酯类、萜烯类、烷烃类、醚类、呋喃类、酚类和芳香族十类化合物。全花花香成分主要是α-蒎烯,松萜和对甲酚;花瓣主要花香成分α-蒎烯,松萜和β-蒎烯;唇瓣主要花香成分对甲酚、α-蒎烯,松萜;合蕊柱主要花香成分对甲酚、己醛、1-己醇。结果表明,西藏虎头兰一天内不同时间段花香成分种类逐渐减少;花器官花香成分从合蕊柱向花瓣种类逐渐增加,说明其主要香气释放部位为花瓣;在不同时间段及花器官中,萜烯类物质、醇类物质和酯类物质无论种类数量还是相对含量都占有很大比重,说明萜烯类物质、醇类物质和酯类物质是西藏虎头兰花香的主要组成成分。  相似文献   

14.
‘伦晚脐橙’成熟果实及其留树保鲜果实的香气成分分析   总被引:1,自引:0,他引:1  
采用顶空固相微萃取-气质联用技术测定了‘伦晚脐橙’成熟果实和留树保鲜果实的香气成分,结果表明,成熟采收(3月30日)后的果实中香气物质有28种,占挥发性物质总量的97.69%,主要成分为烃类、醛类、醇类、酯类和酮类化合物;而留在树上保鲜(5月7日)的果实中香气成分仅检测到15种,占挥发性物质总量的87.11%,特征香气成分D-柠檬烯和β-月桂烯明显减少,且未检测到醇类和酮类化合物,但巴伦西亚桔烯的相对含量剧增,相对含量高达20.27%,成为主要香气物质之一。  相似文献   

15.
采用水蒸气蒸馏法提取丹桂花不同时期的挥发油,结合气相色谱-质谱联用技术对其进行分析和鉴定,用面积归一化法测定各组分的相对百分含量,并对该挥发油清除1,1-二苯基-2-三硝基苯肼(DPPH)自由基能力进行了研究。结果表明:丹桂初花期、盛花初期、盛花期和末花期4个时期分别鉴定出29、30、34和27种化学成分,共鉴定出61种化合物,包括萜烯类15种、醇类15种、醛类6种、酮类9种、酯类8种、烷烃类6种、炔烃1种及氧化物类化合物1种,它们共有成分有8种,此外还检测到一些特有成分,初花期14种、盛花初期5种、盛花期5种和末花期4种。丹桂花挥发油具有一定清除DPPH自由基的能力,但其清除能力低于同质量浓度的Vc。  相似文献   

16.
为探究石斛属(Dendrobium)盛花期花朵的主要挥发性成分,采用顶空固相微萃取结合GC-MS技术对球花石斛(D. thyrsiflorum)、扭瓣石斛(D. tortile)、鼓槌石斛(D. chrysotoxum)和密花石斛(D. densiflorum)花朵的挥发性成分进行分析。结果表明,4种石斛花朵的挥发性成分共70种,包括酯类、醇类、酚类、酮类、烷类、烯类、醛类以及其他等8类,其中烯类总含量最高,为主要挥发性成分。球花和密花石斛的主要香气成分为β-石竹烯,相对含量分别为0.46和6.91μg/(g·h);而扭瓣石斛为醋酸辛酯[6.11μg/(g·h)];鼓槌石斛为β-罗勒烯[5.23μg/(g·h)]。该研究有利于评价和筛选有价值的芳香石斛兰种质资源,为香型石斛兰品种培育和兰花精油的开发利用提供参考。  相似文献   

17.
崇左金花茶花朵和叶片类黄酮UPLC-Q-TOF-MS分析   总被引:1,自引:0,他引:1  
以崇左金花茶(Camellia chuangtsoensis)为材料,利用超高效液相色谱-四极杆-飞行时间质谱(UPLC-Q-TOF-MS)联用技术定性定量分析其花朵(花瓣、雄蕊)和叶片(老叶、新叶)中类黄酮成分与含量。结果表明,崇左金花茶中共检测到14种类黄酮成分,木犀草素、木犀草素-7-O-芸香糖苷、槲皮素-3,7-O-二葡萄糖苷、芸香柚皮苷、圣草素和染料木苷为山茶属金花茶组植物中首次发现,其中槲皮素-3,7-O-二葡萄糖苷、芸香柚皮苷、圣草素和染料木苷主要存在于花朵中,木犀草素和木犀草素-7-O-芸香糖苷在花朵中含量高于叶片,雄蕊中高于花瓣;槲皮素-3-O-葡萄糖苷、槲皮素-7-O-葡萄糖苷、槲皮素-3-O-芸香糖苷和山柰酚-3-O-葡萄糖苷为金花茶组植物叶片中首次发现,其叶片中含量远低于花朵,老叶中远低于新叶,雄蕊中远低于花瓣;儿茶素和表儿茶素在花朵中含量高于叶片,雄蕊中高于花瓣;槲皮素和山萘酚在花朵和叶片中含量均较低。崇左金花茶花瓣和雄蕊中含量较高的类黄酮为儿茶素类、木犀草素类和槲皮素类,主要是表儿茶素、木犀草素和槲皮素-3-O-葡萄糖苷;叶片中为儿茶素类和木犀草素类,主要是表儿茶素、木犀草素和木犀草素-7-O-芸香糖苷。崇左金花茶花瓣和雄蕊中儿茶素类、木犀草素类及类黄酮总量均高于叶片,且雄蕊高于花瓣;花瓣和雄蕊中槲皮素类远高于叶片,且花瓣中远高于雄蕊。  相似文献   

18.
神湾菠萝夏季果与秋季果香气成分差异性分析   总被引:1,自引:0,他引:1  
以'神湾'菠萝夏季果和秋季果为材料,采用顶空固相微萃取法(HS-SPME),提取果实中的香气成分,并经气相色谱/质谱(GC-MS)联机分析.结果表明,夏季果中检测出5类共21种香气成分,分别为酯类、烯类、酸类、醇类和酮类,其中酯类11种,相对含量为92.03%,含量最高的为己酸甲酯(44.91%);烯类6种,相对含量为3.99%;酸类、醇类和酮类分别检测出2种、1种和1种,其相对含量分别为0.72%、0.37%和0.22%.在秋季果中仅检测出2类共8种香气成分,其中酯类7种,总相对含量为92.11%,含量最高的为己酸甲酯(68.36%);烯类物质1种,相对含量为7.89%.  相似文献   

19.
非洲菊盘状花雄蕊发育与舌状花生长着色的对应关系   总被引:1,自引:0,他引:1  
非洲菊(Gerbern hybrida)头状花序由外轮舌状花和内轮盘状花构成。通过观察内轮盘状花雄蕊花粉囊和花粉粒的形态结构与发育顺序,和测定外轮舌状花花瓣的长度、宽度、花色素苷含量等,对它们之间的对应关系进行了研究。花序外轮舌状花花瓣开始着色时为P3期,此时第1轮盘状花出现成熟花粉粒。研究明确了内轮盘状花花粉粒发育与外轮舌状花生长时期和花色素苷积累的对应关系。  相似文献   

20.
为了研究土壤养分对蝴蝶花的花形态可塑性的影响,在田间实验中对蝴蝶花进行了高、中、低养分(N、P、K)水平处理。实验表明,随着土壤养分水平的增加,外轮花瓣长和宽、内轮花瓣长和宽、雌蕊长、雄蕊长、花冠直径均逐渐增加。花各组成部分的形态大小间相关性显著(P=0.05)。结合花部形态特征对环境异质性的生态适应意义,对实验结果进行了讨论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号