首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
内皮祖细胞(Endothelial Progenitor Cells,EPCs)是内皮细胞(endothelial cells,ECs)的前体细胞,即能分化为成熟ECs的祖细胞,它在血管内皮再生中发挥着重要作用。随着EPCs研究的深入,其在临床诊断、预后判断和各种缺血性疾病的治疗方面将会有广阔的应用前景。然而,关于EPCs的定义、来源、表面标记以及培养鉴定方法目前仍存在争议。  相似文献   

2.
为研究胎肝中造血和肝上皮发育的关系,建立了小鼠胎肝高增殖潜能集落形成细胞(HPP-CFC)培养体系,并进行了单克隆培养以及诱导分化实验.在造血和肝诱导因子的共同作用下,对单克隆来源的HPP集落细胞向造血和肝上皮细胞进行诱导分化,采用透射电镜(TEM)、巢式RT-PCR、细胞免疫荧光检测,从细胞形态、超微结构、上皮细胞分化标志等方面对分化后的细胞进行检测.检测结果显示诱导后的部分细胞具有肝细胞特异性的超微结构并不同程度的表达白蛋白(ALB)、甲胎蛋白(AFP)、细胞角蛋白(CK8,CK18)等肝上皮分化标志,同时还表达间质标志α-SMA和血管内皮细胞标志Flk-1.免疫磁珠分选表明:胎肝来源的HPP-CFC主要来自于CD45+细胞,CD45-细胞不具有形成造血克隆的能力.在肝上皮细胞分化潜能上,流式分选获得的CD49f+/Sca-1+细胞与未分选细胞无明显差异.该模型的克隆源性通过细胞混合实验进行证明.研究结果表明,改进的胎肝来源的HPP-CFC可能代表了一个新的造血向肝上皮细胞分化的单克隆模型,为研究胎肝中造血和非造血细胞的发育关系提供了一个新的切入点.  相似文献   

3.
胸腺T细胞由双阳到单阳分化发育的非线性模型   总被引:1,自引:0,他引:1  
根据指令与随机相结合模型的理论,建立非线性数学模型,从理论上描述了胸腺内T细胞从双阳到单阳细胞的分化发育过程.发现随着胸腺基质细胞(TSCs)上MHCⅠ位点的增加,CD4+8+双阳胸腺细胞数量减少,CD4-8+单阳胸腺细胞数增加;随着CD4+8+细胞与TSCs亲和力的增加,更多的双阳细胞进一步分化为单阳细胞,描述了胸腺基质细胞如何介导胸腺细胞从双阳向单阳分化发育的过程.  相似文献   

4.
胚胎发生时期,内皮前体细胞(endothelial progenitor cells,EPCs)参与了原始血管形成的最初过程(血管发生)。已有的证据显示,分化为内皮细胞(endothelial cells,Ecs)的前体也存在于成人中,正常情况下,EPCs停留在成人的骨髓,但是,可以通过细胞因子或血管生成因子信号被动员到循环血,迁移到生理或病理条件下的新血管形成位点,并原位分化成内皮细胞,快速和及时地修复损伤的血管。自源的EPCs原住动员或移植是治疗性血管再生的一个潜在、有效的方法,因此,探究EPCs从骨髓的动员和调节,对血管再生以及修复器官功能具有重要的意义。  相似文献   

5.
目的探讨大鼠骨髓源性内皮祖细胞(endothelial progenitor cells,EPCs)的分离培养鉴定的方法.方法 Percoll(1.077 g/ml)分离液分离大鼠骨髓单个核细胞,血管内皮生长因子(Vascular Endothelial Growth Factors, VEGF)和碱性成纤维细胞生长因子(basic Fibroblast Growth Factors, bFGF),对其进行诱导培养,光镜观察EPCs形态,免疫荧光检测血小板内皮细胞粘附分子-1(PECAM-1/CD31)、血管内皮钙粘蛋白(VE-cadherin/CD144)、荆豆凝集素-1(FITC-UEA-1)的表达和摄取Dil荧光标记的乙酰化-低密度脂蛋白(Dil-ac-LDL).结果 诱导培养7 d后,可见集落和铺路石样结构,激光扫描共聚焦显微镜(Laser Scanning Confocal Microscope, LSCM)显示表型为CD31+VE-cadherin+双阳性细胞以及具有内皮细胞功能的Dil-ac-LDL和FITC-UEA-1双染色细胞.结论 采用Percoll(1.077 g/ml)密度梯度离心结合VEGF、bFGF诱导培养可以获得EPCs,说明该培养方法可行.  相似文献   

6.
胸腺细胞发育是细胞因子及胸腺细胞与胸腺基质细胞相互作用的结果.观察了IL-7及小鼠胸腺基质上皮细胞系MTEC5对成年小鼠CD3- CD4- CD8- 胸腺细胞发育的影响.IL-7能促进TN细胞增殖.TN细胞经在IL-7条件下培养后表达CD3-TCR分子,其中20%~40%为TCRγδ+,60%~80%为TCRαβ+,但保持CD4- CD8- .该细胞获得对 Con A、抗CD3mAb及抗TCRmAb进行增殖应答的能力,抗CD28mAb能促进这种增殖应答,证明表达的CD3-TCR分子功能成熟.当在该系统中加入MTEC5,部分TN细胞转变为CD3+TCRβ+CD4+CD8- 和CD3+TCRβ+CD4- CD8+SP细胞,表明MTEC5可诱导TN细胞分化为表现型成熟的胸腺细胞.  相似文献   

7.
目的:建立小鼠胚胎干细胞体外定向分化为血管内皮细胞和造血细胞的体系,并验证诱导后2种细胞的表面分子特征。方法:以小鼠胚胎成纤维细胞为饲养层,首先在无血清培养基StemPro中加入骨形态发生蛋白4(BMP4)、激活素A、碱性成纤维细胞生长因子(FGF-Basic)和血管内皮细胞生长因子(VEGF),诱导小鼠胚胎干细胞系R1/E 4 d后形成拟胚体;再将拟胚体消化后与OP9-DL1基质细胞共孵育,分别用干细胞因子(SCF)、VEGF和SCF、FLt3、白细胞介素3(IL-3)诱导向内皮和造血2个方向分化,并以CD31、CD45、CD144、Kit、CD201作为表面标志,流式检测诱导后细胞的表面分子特征和诱导效率;诱导10 d后免疫组化染色,进行内皮细胞的形态学鉴定。结果:诱导分化10 d后,免疫组化染色观察到多个内皮管状结构,流式检测CD31^+的内皮细胞比例为1.35%±0.05%,进一步分析CD31^+CD144^+CD45^-群体,有3.0%±0.2%的细胞表型为Kit^+CD201^+,提示该部分细胞可能是处于分化上游的内皮干祖细胞;CD45^+的造血细胞比例为35.0%±0.5%,其中0.35%±0.05%的细胞表达Kit和CD201,提示该部分细胞可能是处于分化上游的造血干祖细胞。结论:本研究将胚胎干细胞诱导为内皮细胞和造血细胞,并且能诱导出具有内皮、造血干祖细胞分子特征的细胞,可作为理想的体外诱导分化体系。  相似文献   

8.
小G蛋白Rac1在胚胎发育早期血管形成尤其是内皮发生过程中的作用尚不清楚.采用胚胎干细胞(ESCs)为模型,建立稳定表达持续表达型Rac1(G12V)和显性失活型Rac1(T17N)编码序列的小鼠ESCs并制备胚胎小体(EBs),诱导分化后观察Rac1(G12V)和Rac1(T17N)对内皮细胞分化和迁移功能的影响.采用相差显微镜观察EBs发育和分化特征,Pull down分析Rac1表达变化,免疫荧光染色和Western blot分析内皮分化标志物,Matrigel凝胶实验观察血管索形成.结果表明,无论过表达或抑制Rac1的活化,并不影响EBs发育,均可形成典型的EBs胚层结构.抑制Rac1活化对内皮细胞系的发育无影响,但分化的内皮细胞不能连接成血管网.活化的Rac1表达减少,细胞迁移受到明显抑制.抑制Rac1活化导致细胞骨架F-actin排布紊乱.以上结果提示,Rac1影响胚胎早期血管发育的因素是抑制细胞游走,后者可能是通过F-actin机制所介导.  相似文献   

9.
内皮祖细胞在炎症损伤修复中的作用和机制   总被引:2,自引:0,他引:2  
黄河  汤耀卿 《生命科学》2008,20(2):225-230
内皮祖细胞(endothelial progenitor cells,EPCs)是出生后,可以在机体内分化为成熟内皮细胞的一种前体细胞,主要来源于骨髓。多种伴有血管内皮细胞损伤的疾病都可引起外周血EPCs数量变化。有研究显示EPCs参与炎性损伤修复,并且外周血EPCs数量与血管内皮损伤程度和疾病预后存在一定的相关关系。EPCs。通过动员、迁移、归巢和分化等步骤修复内皮。炎症反应中受损组织释放的基质细胞衍生因子、血管内皮生长因子可与EPCs相应的受体结合,通过内皮型一氧化氮合酶、基质金属蛋白酶9等途径调节内皮修复过程,这是EPCs分化为内皮细胞过程的主要调控机制。此外,EPCs还可通过旁分泌机制促进相邻的内皮细胞增殖分化。目前,EPCs在炎症领域仅用于内皮炎性损伤和疾病预后评估,但是EPCs在心血管疾病和组织工程领域应用研究的成功,为EPCs在炎症反应的诊断和治疗提供了新的思路。  相似文献   

10.
葡萄膜炎是一种反复发作的炎症性疾病,可导致免疫系统功能障碍和多器官损伤.然而,葡萄膜炎是否导致肝功能损害尚不十分清楚.本文通过运用流式分析技术和激光共聚焦成像技术,研究了实验性自身免疫葡萄膜炎模型的肝脏病理和功能变化.结果显示肝损伤可出现在葡萄膜炎的炎症后期并与眼损伤程度相关.并且CD3+ CD4+ T细胞、CD3- NK1.1+ DX5- NK细胞、和CD11b+ F4/80- ly6c+ 细胞在感染的眼睛和肝脏中增加.将CD3+ CD4+ T细胞回输给炎症的小鼠后,眼睛和肝脏的病理损伤加重.此外,在炎症的小鼠中可见血管扩张,大量淋巴细胞浸润到炎症的眼和肝脏的血管周围.总之,我们的研究结果提示,肝损伤可以发生在小鼠葡萄膜炎模型中,这种损伤可能与通过外周循环浸润到肝脏的CD3+ CD4+ T细胞有关.  相似文献   

11.
12.
肿瘤干细胞理论认为只有存在于肿瘤中的少量干细胞性质的细胞群体对肿瘤发生和发展起着决定作用,肿瘤是由干细胞突变积累而形成的无限增殖的异常组织,这一理论的提出使人们对肿瘤发生机制的认识上升到了一个新的高度,也引起了研究者的广泛关注;肝癌是我国常见的恶性肿瘤之一,我国肝癌死亡率居世界之首,目前对肝癌的研究是我国恶性肿瘤防治的重点工作,现对当前肿瘤干细胞与肝癌肿瘤干细胞相关方面的最新研究进展作一概述。  相似文献   

13.
Fusion of Tumour Cells with Host Cells   总被引:5,自引:0,他引:5  
THE A9 cell is an 8-azaguanine-resistant derivative of the L cell line1. It lacks the enzyme inosinic acid pyrophosphorylase and is thus unable to grow in media such as HAT2 in which endogenous synthesis of nucleic acid is blocked by aminopterin. The A9 line has little ability to grow progressively in vivo. Inocula of 5 × 104 to 2 × 106 cells produced progressive tumours in only 12% of X-irradiated newborn syngeneic C3H mice3. One of these tumours was explanted as a cell suspension into Eagle's minimal essential medium containing 15% foetal calf serum and then subcultivated in this medium with 5% foetal calf serum. At each passage, cells were inoculated into X-irradiated newborn syngeneic C3H or semi-allogeneic C3H×X F1 mice (X designates a number of different allogeneic parents). Between 80 and 90% of the inoculated animals developed progressive tumours. The cell line was therefore designated A9HT (high take incidence). The karyotype of the A9HT line was found to be similar to that of the A9 line, but with a slightly reduced total chromosome number. The modal chromosome number of A9HT was about 53, compared with about 57 for A9 (see ref. 4). A9 and A9HT both had between 20 and 30 bi-armed chromosomes and a number of marker chromosomes in common. A detailed comparison of the karyotypes of the two lines examined by the quinacrine fluorescence technique has been made5. The A9HT line, like its A9 parent, lacks inosinic acid pyrophos-phorylase and is unable to grow in HAT medium.  相似文献   

14.
目前细胞和发育生物学上的研究成果为生物医学研究提供了广泛的前景.将完全分化的细胞重编程,不经过胚胎逆转为多能干细胞状态,这点燃了再生医学应用的新希望,这一成果从法律、道德、伦理等不同方面被人们所接受.通过体细胞克隆胚胎获得干细胞所面临的破坏胚胎的伦理限制,促使研究者去寻求将分化细胞重编程逆转为干细胞的新方法.主要论述了体细胞重编程的原理、过程及不经过胚胎逆转为多能干细胞的方法.  相似文献   

15.
The hippocampal system is critical for storage and retrieval of declarative memories, including memories for locations and events that take place at those locations. Spatial memories place high demands on capacity. Memories must be distinct to be recalled without interference and encoding must be fast. Recent studies have indicated that hippocampal networks allow for fast storage of large quantities of uncorrelated spatial information. The aim of the this article is to review and discuss some of this work, taking as a starting point the discovery of multiple functionally specialized cell types of the hippocampal–entorhinal circuit, such as place, grid, and border cells. We will show that grid cells provide the hippocampus with a metric, as well as a putative mechanism for decorrelation of representations, that the formation of environment-specific place maps depends on mechanisms for long-term plasticity in the hippocampus, and that long-term spatiotemporal memory storage may depend on offline consolidation processes related to sharp-wave ripple activity in the hippocampus. The multitude of representations generated through interactions between a variety of functionally specialized cell types in the entorhinal–hippocampal circuit may be at the heart of the mechanism for declarative memory formation.The scientific study of human memory started with Herman Ebbinghaus, who initiated the quantitative investigation of associative memory processes as they take place (Ebbinghaus 1885). Ebbinghaus described the conditions that influence memory formation and he determined several basic principles of encoding and recall, such as the law of frequency and the effect of time on forgetting. With Ebbinghaus, higher mental functions were brought to the laboratory. In parallel with the human learning tradition that Ebbinghaus started, a new generation of experimental psychologists described the laws of associative learning in animals. With behaviorists like Pavlov, Watson, Hull, Skinner, and Tolman, a rigorous program for identifying the laws of animal learning was initiated. By the middle of the 20th century, a language for associative learning processes had been developed, and many of the fundamental relationships between environment and behavior had been described. What was completely missing, though, was an understanding of the neural activity underlying the formation of the memory. The behaviorists had deliberately shied away from physiological explanations because of the intangible nature of neural activity at that time.Then the climate began to change. Karl Lashley had shown that lesions in the cerebral cortex had predictable effects on behavior in animals (Lashley 1929, 1950), and Donald Hebb introduced concepts and ideas to account for complex brain functions at the neural circuit level, many of which have retained a place in modern neuroscience (Hebb 1949). Both Lashley and Hebb searched for the engram, but they found no specific locus for it. A significant turning point was reached when Scoville and Milner (1957) reported severe loss of memory in an epileptic patient, patient H.M., after bilateral surgical removal of the hippocampal formation and the surrounding medial temporal lobe areas. “After operation this young man could no longer recognize the hospital staff nor find his way to the bathroom, and he seemed to recall nothing of the day-to-day events of his hospital life.” This tragic misfortune inspired decades of research on the function of the hippocampus in memory. H.M.’s memory impairment could be reproduced in memory tasks in animals and studies of H.M., as well as laboratory animals, pointed to a critical role for the hippocampus in declarative memory—memory, which, in humans, can be consciously recalled and declared, such as memories of experiences and facts (Milner et al. 1968; Mishkin 1978; Cohen and Squire 1980; Squire 1992; Corkin 2002). What was missing from these early studies, however, was a way to address the neuronal mechanisms that led information to be stored as memory.The aim of this article is to show how studies of hippocampal neuronal activity during the past few decades have brought us to a point at which a mechanistic basis of memory formation is beginning to surface. An early landmark in this series of investigations was the discovery of place cells, cells that fire selectively at one or few locations in the environment. At first, these cells seemed to be part of the animal’s instantaneous representation of location, independent of memory, but gradually, over the course of several decades, it has become clear that place cells express current as well as past and future locations. In many ways, place cells can be used as readouts of the memories that are stored in the hippocampus. More recent work has also shown that place cells are part of a wider network of spatially modulated neurons, including grid, border, and head direction cells, each with distinct roles in the representation of space and spatial memory. In this article, we shall discuss potential mechanisms by which these cell types, particularly place and grid cells, in conjunction with synaptic plasticity, may form the basis of a mammalian system for fast high-capacity declarative memory.  相似文献   

16.
Dendritic cells (DC) are professional antigen presenting cells, playing an important role in the initiation of T- and T cell dependent immune responses. DC are highly mobile cells and the sequential migration of DC in and out of tissues is accompanied by phenotypical as well as functional changes instrumental to their function as sentinels of the immune system. Herein, we will review recent progress in understanding the origin of DC, their migratory behaviour and their capacity to attract and interact with lymphocytes, with emphasis on the chemokine system.  相似文献   

17.
Although macrophages and other immune system cells, especially T cells, have been shown to play disease-promoting roles in atherosclerosis, less is known about the role of antigen presenting cells. Functional, immune stimulating dendritic cells (DCs) have recently been detected in aortic intima, the site of origin of atherosclerosis. We had compared DCs with macrophages in mice with experimental atherosclerosis, to clearly define cell types by developmental and functional criteria. This review summarizes recent advances in studies of DCs in humans and in mouse models of atherosclerosis, as well as providing a simple strategy to measure regulatory T (Treg) cells in the mouse aorta.  相似文献   

18.
蛋白细胞     
  相似文献   

19.
种子细胞也是组织工程的核心研究内容,获得足够数量和质量的种子细胞是开展体外组织工程的必要基础。用于组织工程的种子细胞必须具有形成新组织结构的能力,主要来源于自体、同种异体或异种,在具体应用时各有利弊。一些成体干细胞由于不存在伦理争议以及发育分化条件相对简单等优势是重要的种子细胞,包括造血干细胞、骨髓干细胞、神经干细胞、脂肪干细胞、皮肤干细胞。人胚胎干细胞及其组织工程要真正在临床医学中得到应用,还有很长的一段路要走。其他一些细胞也可以作为组织工程种子细胞,包括内皮细胞、上皮细胞、成纤维细胞、骨细胞、成骨细胞、角质细胞、前脂肪细胞、脂肪细胞、肌腱细胞等。这些细胞已分化,分裂能力有限,但仍应用于组织工程。理想的种子细胞具有一定标准。  相似文献   

20.
L Wang  J Cao  P Ji  D Zhang  L Ma  M Dym  Z Yu  L Feng 《Cell & Bioscience》2012,2(1):27
ABSTRACT: BACKGROUND: During normal development primordial germ cells (PGCs) derived from the epiblast are the precursors of spermatogonia and oogonia. In culture, PGCs can be induced to dedifferentiate to pluripotent embryonic germ (EG) cells in the presence of various growth factors. Several recent studies have now demonstrated that spermatogonial stem cells (SSCs) can also revert back to pluripotency as embryonic stem (ES)-like cells under certain culture conditions. However, the potential dedifferentiation of SSCs into PGCs or the potential generation of oocytes from SSCs has not been demonstrated before. RESULTS: We report that mouse male SSCs can be converted into oocyte-like cells in culture. These SSCs-derived oocytes (SSC-Oocs) were similar in size to normal mouse mature oocytes. They expressed oocyte-specific markers and give rise to embryos through parthenogenesis. Interestingly, the Y- and X-linked testis-specific genes in these SSC-Oocs were significantly down-regulated or turned off, while oocyte-specific X-linked genes were activated. The gene expression profile appeared to switch to that of the oocyte across the X chromosome. Furthermore, these oocyte-like cells lost paternal imprinting but acquired maternal imprinting. CONCLUSIONS: Our data demonstrate that SSCs might maintain the potential to be reprogrammed into oocytes with corresponding epigenetic reversals. This study provides not only further evidence for the remarkable plasticity of SSCs but also a potential system for dissecting molecular and epigenetic regulations in germ cell fate determination and imprinting establishment during gametogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号