首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
邢建德  卓春晖  郭聪 《四川动物》2007,26(3):506-509
利用YG001A单纤维电子强力仪测定了15只不同体重棒络新妇的拖牵丝机械性能,分析了蜘蛛体重与拖牵丝机械性能的相互关系,并利用SEM及计算机图象处理技术分析了拖牵丝的直径,发现不同个体的拖牵丝平均直径和断裂强度随着体重的增加而增加,而屈服点应力、屈服点拉伸率、断裂点拉伸率与体重都没有相关性。  相似文献   

2.
三种类型蜘蛛丝的结构及生物学功能   总被引:6,自引:2,他引:4  
蒋平  沈丽  杨孔  冉丹  王劼  郭聪 《动物学杂志》2003,38(5):10-14
利用付里叶变换红外光谱仪(FFIR)对棒络新妇(Nephila clavata)、悦目金蛛(Argiope amoena)的大壶状腺丝(拖丝)、悦目金蛛的捕丝(粘性螺旋丝)和卵袋丝这3种不同类型蜘蛛丝的二级结构进行了测试研究。结果表明:蜘蛛丝同时包含无规则卷曲、α-螺旋和β-折叠构象;对这3种蛛丝的红外光谱进行比较表明同一蜘蛛的不同类型蛛丝所含的这3种二级结构的比例不同,这种不同组成的二级结构就赋予了蜘蛛丝不同的特性,这种特性又与其不同的功能相适应。此外,还用扫描电镜(SEM)和光学显微镜对悦目金蛛和小悦目金蛛(A.minuta)的拖丝和捕丝做了形态结构观察。蜘蛛丝这种天然动物蛋白纤维所具有的特殊的形态结构、蛋白质二级结构与其特殊的性能和生物学功能是高度一致的。  相似文献   

3.
棒络新妇和悦目金蛛拖丝超微结构与力学行为   总被引:2,自引:0,他引:2  
采用SEM对棒络新妇Nephila clavata腹部向上和向下在水平纱窗上爬行时纺出的拖丝、悦目金蛛Argiope amoena捕食拖丝与垂直向下缓慢纺出的拖丝及其圆网的铆钉丝进行了超微结构观察,采用电子单纤强力仪对棒络新妇拖丝与悦目金蛛圆网铆钉丝进行了力学拉伸试验.结果 表明棒络新妇和悦目金蛛拖丝均呈现出一至多根细丝纤维的多样化超微结构特征,其中悦目金蛛圆网铆钉丝还呈现出"S"形似弹簧的结构.两种蜘蛛丝的力学行为和性能与各自的功能要求相一致.蜘蛛能调节拖丝的超微结构、纤维组成和直径大小以适应其在不同环境条件下对力学性能和功能的瞬时需要.研究结果有助于拓宽和加深人们对蜘蛛丝超微结构、力学性能与生物学功能之间关系的认识和理解.  相似文献   

4.
悦目金蛛拖丝的超微结构研究   总被引:3,自引:2,他引:1  
蒋平  沈丽  卓春晖  郭聪 《四川动物》2007,26(3):501-505
采用非固定的抽丝方法,从一只未麻醉的悦目金蛛(Argiope amoena)的纺器将拖丝抽出,然后用扫描电镜(SEM)对拖丝进行超微结构的观察,结果表明:悦目金蛛拖丝至少具有2根、3根、4根及多根单丝纤维构成的4种不同结构,其中有一种类似弹簧的结构;另外,丝的表面还出现一种小环结构,这两种结构可能是拖丝纤维具有优良机械性能的原因之一。"束状结构"和"小环结构"在文献中未见报道。拖丝的直径范围为0.25~10.77μm;悦目金蛛似乎能调节拖丝的结构和直径,以适应其所面临的即时环境。本文基于上述观察结果并结合前人的研究,提出了蜘蛛拖丝结构-生物学功能多样性假说,对蜘蛛丝的结构与生物学功能之间的关系作了探讨。  相似文献   

5.
对4种常见蜘蛛大腹园蛛Araneus ventricosus、迷宫漏斗蛛Agelena labyrinthica、草间钻头蛛Hylyphantes graminicola和棒络新妇Nephila clavata蛛丝的物理特性和机械性能进行了初步研究.结果 表明:捕丝是由2根核心丝构成,4种蛛丝呈现不同的颜色;4种蜘蛛蛛丝的密度略有不同,棒络新妇的蛛丝密度最大,草间钻头蛛的蛛丝密度最小;蛛丝中棒络新妇的断裂伸长率和断裂强度都最大,分别为47.3%和852.6 Nmm-2,草间钻头蛛蛛丝的断裂伸长率和断裂强度都最小,分别为32.1%和652.3 Nmm-2.与其它物理化学材料相比,蛛丝具有优异的综合力学性能,生物学特性与生物学功能具有高度一致性.  相似文献   

6.
在不惊扰蜘蛛的情况下对悦目金蛛Argiope amoena和圆尾肖蛸Tetragnatha vermiformis的个体大小与蛛网粘丝区面积问的相关性进行了野外观察。主要测量了蜘蛛体长、蛛网粘丝区直径、蛛网框丝固着点间最大距离、网中枢到地面或水面距离、网平面与水平线的夹角等参数;另外还对蛛网框丝固着点间最大距离作为圆网蛛网址选择行为量化指标的可行性进行了探讨。结果表明,2种蜘蛛体长与蛛网粘丝区面积以及蜘蛛体长与蛛网框丝固着点间最大距离均呈现明显的正相关。悦目金蛛体长与蛛网粘丝区面积的相关性高于圜尾肖蛸,这可能与悦目金蛛在其生境中易于找到框丝固着点、而圆尾肖蛸在其生境中较难找到框丝同着点有关;  相似文献   

7.
蛛网是蜘蛛的捕食工具,蛛网网丝的结构与性能不仅影响蜘蛛的捕食效率,也关系着蜘蛛的捕食投入。本文利用单纤维电子强力仪研究横纹金蛛(Argiope bruennichi)室内捕食面包虫(Tenebrio molitor)时上前与返回捕食拖丝的力学性能以及捕食经验对圆网半径丝修补前后的力学性能的影响。结果表明,与上前捕食拖丝相比,返回捕食拖丝减小了弹性区的投入,增加了屈服区和加强区的投入,且返回时捕食拖丝更具柔韧性。整体而言,与初始半径丝相比,在未喂食面包虫的条件下,网的半径修补丝增加了力学性能的投入;而在喂食面包虫的条件下,网的半径修补丝减少了力学性能的投入。所测试丝样中出现了两种类型的蛛丝力学行为:一种为典型的蛛丝力学行为;另外一种为似黏流性材料的力学行为,其反映的是满足蛛丝耗散猎物或自身下降时动能的另外一种力学性能的策略。本研究表明蜘蛛能根据其捕食经验遵循Cost-Benefit原则对蜘蛛丝的力学性能进行调节,从而调整捕食投入。  相似文献   

8.
利用扫描电镜、氨基酸分析仪、X-衍射仪和单纤维电子强力仪分别对悦目金蛛Argiopeamoena拖丝、网框丝和卵袋丝的超微结构和理化特性进行了测试和观察。结果表明,悦目金蛛卵袋不是由一种结构均一的丝纤维构成,而是由直径相差悬殊的Ⅰ型卵袋丝和Ⅱ型卵袋丝2种丝纤维共同组成,该结果对卵袋丝仅由管状腺产生的观点提出了疑问。在氨基酸组成上悦目金蛛拖丝和网框丝相似,但其卵袋丝的氨基酸组成与拖丝和网框丝相比差别明显。另外还发现卵袋丝的强度、结晶度大于拖丝和网框丝,而它的延伸性能却不及拖丝和网框丝。  相似文献   

9.
蜘蛛丝是一种具有优良机械性能的天然动物蛋白纤维,它特有的结构和性能与其生物学功能密切相关。作者采用氨基酸自动分析仪、傅立叶转换红外光谱仪、扫描电镜和电子单纤强力仪对悦目金蛛(Argiope amoena)和棒络新妇(Nephila clavata)的卵袋丝进行了物理化学结构表征与力学性能的研究,结果表明两种蜘蛛卵袋均由微米级柱状腺丝、大壶状腺丝、亚微米级或纳米级葡萄状腺丝构成。卵袋丝的表面形貌特征、极性氨基酸含量、大侧链与小侧链氨基酸的比值、无定型区、β-折叠结构与结晶结构的含量等氨基酸组成种类与蛋白质二级结构特征,均满足各自生物学功能对断裂强度、延展性、初始模量等力学性能的要求。  相似文献   

10.
不同体重悦目金蛛的蛛网结构   总被引:1,自引:0,他引:1  
蛛网是蜘蛛的捕食工具,其结构反映了蜘蛛的捕食投入和捕食策略。对不同大小悦目金蛛(Argiope amoena)的蛛网捕丝长度、捕丝间距、捕食面面积、支持带总面积、半径丝根数和网捕丝分布不对称性等进行观测。结果表明①在体重小于200mg的个体中,捕丝长度、捕丝间距和捕食面面积与个体大小呈显著正相关,而大于200mg的个体中,这种关系并不显著;②蜘蛛在发育到一定程度的时候(在本研究中为22.7mg)才可能出现支持带,并且支持带总面积与体重之间呈显著正相关;③半径丝根数会随体重的增加而减少;④在小于200mg的蜘蛛中,网上、下部捕丝长度比与体重呈显著负相关,而在大于200mg的个体中,二者之间的关系并不显著。这与我们预测的结果是基本一致的,即蛛网的这种结构变化是蜘蛛不同发育阶段捕食投入和捕食策略的反应。  相似文献   

11.
The mechanical characteristics of dragline silks collected from a range of spiders drawn from the Argiopidae, Tetragnathidae, Theridiidae and Pisauridae displayed significant inter- and intraspecific differences. Dragline silks of the same species could show considerable variability probably dependent upon spider condition: starvation, for example, lead to decreased breaking elongation in Nephila edulis. Environmental conditions such as reeling speed affected silk properties such that (i) breaking elongation decreased, (ii) breaking stress increased and (iii) Young's modulus increased with increasing reeling speed. However, N. edulis and Araneus diadematus responded differently to the reeling speed treatments suggesting differences in basic silk properties.  相似文献   

12.
Many spiders use silk to construct webs that must function for days at a time, whereas many other species renew their webs daily. The mechanical properties of spider silk can change after spinning under environmental stress, which could influence web function. We hypothesize that spiders spinning longer‐lasting webs produce silks composed of proteins that are more resistant to environmental stresses. The major ampullate (MA) silks of orb web spiders are principally composed of a combination of two proteins (spidroins) called MaSp1 and MaSp2. We expected spider MA silks dominated by MaSp1 to have the greatest resistance to post‐spin property change because they have high concentrations of stable crystalline β‐sheets. Some orb web spiders that spin three‐dimensional orb webs, such as Cyrtophora, have MA silks that are predominantly composed of MaSp1. Hence, we expected that the construction of three‐dimensional orb webs might also coincide with MA silk resistance to post‐spin property change. Alternatively, the degree of post‐spin mechanical property changes in different spider silks may be explained by factors within the spider's ecosystem, such as exposure to solar radiation. We exposed the MA silks of ten spider species from five genera (Nephila, Cyclosa, Leucauge, Cyrtophora, and Argiope) to ecologically high temperatures and low humidity for 4 weeks, and compared the mechanical properties of these silks with unexposed silks. Using species pairs enabled us to assess the influence of web dimensionality and MaSp composition both with and without phylogenetic influences being accounted for. We found neither the MaSp composition nor the three‐dimensionality of the orb web to be associated with the degree of post‐spin mechanical property changes in MA silk. The MA silks in Leucauge spp. are dominated by MaSp2, which we found to have the least resistance to post‐spin property change. The MA silk in Argiope spp. is also dominated by MaSp2, but has high resistance to post‐spin property change. The ancestry of Argiope is unresolved, but it is largely a tropical genus inhabiting hot, open regions that present similar stressors to silk as those of our experiment. Ecological factors thus appear to influence the vulnerability of orb web spider MA silks to post‐spin property change. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 580–588.  相似文献   

13.
Spiders and their silk are an excellent system for connecting the properties of biological materials to organismal ecology. Orb-weaving spiders spin sticky capture threads that are moderately strong but exceptionally extensible, resulting in fibers that can absorb remarkable amounts of energy. These tough fibers are thought to be adapted for arresting flying insects. Using tensile testing, we ask whether patterns can be discerned in the evolution of silk material properties and the ecological uses of spider capture fibers. Here, we present a large comparative data set that allows examination of capture silk properties across orb-weaving spider species. We find that material properties vary greatly across species. Notably, extensibility, strength, and toughness all vary approximately sixfold across species. These material differences, along with variation in fiber size, dictate that the mechanical performance of capture threads, the energy and force required to break fibers, varies by more than an order of magnitude across species. Furthermore, some material and mechanical properties are evolutionarily correlated. For example, species that spin small diameter fibers tend to have tougher silk, suggesting compensation to maintain breaking energy. There is also a negative correlation between strength and extensibility across species, indicating a potential evolutionary trade-off. The different properties of these capture silks should lead to differences in the performance of orb webs during prey capture and help to define feeding niches in spiders.  相似文献   

14.
Since thousands of years humans have utilized insect silks for their own benefit and comfort. The most famous example is the use of reeled silkworm silk from Bombyx mori to produce textiles. In contrast, despite the more promising properties of their silk, spiders have not been domesticated for large-scale or even industrial applications, since farming the spiders is not commercially viable due to their highly territorial and cannibalistic nature. Before spider silks can be copied or mimicked, not only the sequence of the underlying proteins but also their functions have to be resolved. Several attempts to recombinantly produce spider silks or spider silk mimics in various expression hosts have been reported previously. A new protein engineering approach, which combines synthetic repetitive silk sequences with authentic silk domains, reveals proteins that closely resemble silk proteins and that can be produced at high yields, which provides a basis for cost-efficient large scale production of spider silk-like proteins.  相似文献   

15.
Major ampullate (MAA) silks from a variety of spider species were collected by artificial silking that adjusted the samples to have similar breaking strains. Those silks are highly comparable in post-yield mechanical properties, but their supercontraction behaviors and initial moduli vary in large ranges and both correlate with the content of one amino acid, proline. These relationships, in combination with protein sequence data, support the hypothesis that the proline-related motif, that is, GPGXX, may play a key role in silk. This also explains the interspecific variability of spider dragline silk. Moreover, MAA silks from three representative species were prepared in a range of processing conditions and their mechanical properties were compared. Our results indicate how chemical compositions, coupled with processing conditions, shape the mechanical properties of the spider silk.  相似文献   

16.
Although phylogenetic studies have shown covariation between the properties of spider major ampullate (MA) silk and web building, both spider webs and silks are highly plastic so we cannot be sure whether these traits functionally covary or just vary across environments that the spiders occupy. As MaSp2‐like proteins provide MA silk with greater extensibility, their presence is considered necessary for spider webs to effectively capture prey. Wolf spiders (Lycosidae) are predominantly non‐web building, but a select few species build webs. We accordingly collected MA silk from two web‐building and six non‐web‐building species found in semirural ecosystems in Uruguay to test whether the presence of MaSp2‐like proteins (indicated by amino acid composition, silk mechanical properties and silk nanostructures) was associated with web building across the group. The web‐building and non‐web‐building species were from disparate subfamilies so we estimated a genetic phylogeny to perform appropriate comparisons. For all of the properties measured, we found differences between web‐building and non‐web‐building species. A phylogenetic regression model confirmed that web building and not phylogenetic inertia influences silk properties. Our study definitively showed an ecological influence over spider silk properties. We expect that the presence of the MaSp2‐like proteins and the subsequent nanostructures improves the mechanical performance of silks within the webs. Our study furthers our understanding of spider web and silk co‐evolution and the ecological implications of spider silk properties.  相似文献   

17.
Silk threads from spiders exhibit extraordinary mechanical properties, such as superior toughness and elasticity. Spider silks consist of several different large repetitive proteins that act as the basic materials responsible for these outstanding features. The production of spider silk protein variants in plants opens up new horizons in the production and functional investigation that enable the use of spider silks in innovative material development, nanotechnology and biomedicine in the future. This review summarizes and discusses production of spider silk protein variants in plants, especially with regards to plant expression systems, purification strategies, and characteristics of spider silk variants. Furthermore, the challenge of producing native-sized recombinant spidroins in planta is outlined, presenting three different strategies for achieving these high repetitive proteins with the help of non-repetitive C-terminal domains, crosslinking transglutaminase, and self-linking inteins. The potential of these fascinating proteins in medicine is also highlighted.  相似文献   

18.
Blamires SJ  Wu CL  Tso IM 《PloS one》2012,7(2):e31626

Background

It is energetically expensive to synthesize certain amino acids. The proteins (spidroins) of spider major ampullate (MA) silk, MaSp1 and MaSp2, differ in amino acid composition. Glutamine and proline are prevalent in MaSp2 and are expensive to synthesize. Since most orb web spiders express high proline silk they might preferentially attain the amino acids needed for silk from food and shift toward expressing more MaSp1 in their MA silk when starved.

Methodology/Principal Findings

We fed three spiders; Argiope aetherea, Cyrtophora moluccensis and Leucauge blanda, high protein, low protein or no protein solutions. A. aetherea and L. blanda MA silks are high in proline, while C. moluccesnsis MA silks are low in proline. After 10 days of feeding we determined the amino acid compositions and mechanical properties of each species'' MA silk and compared them between species and treatments with pre-treatment samples, accounting for ancestry. We found that the proline and glutamine of A. aetherea and L. blanda silks were affected by protein intake; significantly decreasing under the low and no protein intake treatments. Glutmaine composition in C. moluccensis silk was likewise affected by protein intake. However, the composition of proline in their MA silk was not significantly affected by protein intake.

Conclusions

Our results suggest that protein limitation induces a shift toward different silk proteins with lower glutamine and/or proline content. Contradictions to the MaSp model lie in the findings that C. moluccensis MA silks did not experience a significant reduction in proline and A. aetherea did not experience a significant reduction in serine on low/no protein. The mechanical properties of the silks could not be explained by a MaSp1 expressional shift. Factors other than MaSp expression, such as the expression of spidroin-like orthologues, may impact on silk amino acid composition and spinning and glandular processes may impact mechanics.  相似文献   

19.
The mechanical properties of spider silks have diverged as spiders have diversely speciated. Because the main components of silks are proteins, it is valuable to investigate their sequences. However, silk sequences have been regarded as difficult information to analyze due to their imbalance and imperfect tandem repeats (ITR). Here, an in silico approach is applied to systemically analyze a group of silk sequences. It is found that every time new spider groups emerge, unique trimer motifs appear. These trimer motifs are used to find additional clues of evolution and to determine relationships with mechanical properties. For the first time, crucial evidence is provided that shows silk sequences coevolved with spider species and the mechanical properties of their fibers to adapt to new living environments. This novel approach can be used as a platform for analyzing other groups of ITR‐harboring proteins and to obtain information for the design of tailor‐made fibrous protein materials.  相似文献   

20.
Tian M  Lewis RV 《Biochemistry》2005,44(22):8006-8012
As a result of hundreds of millions of years of evolution, orb-web-weaving spiders have developed the use of seven different silks produced by different abdominal glands for various functions. Tubuliform silk (eggcase silk) is unique among these spider silks due to its high serine and very low glycine content. In addition, tubuliform silk is the only silk produced just during a short period of time, the reproductive season, in the spider's life. To understand the molecular characteristics of the proteins composing this silk, we constructed tubuliform-gland-specific cDNA libraries from three different spider families, Nephila clavipes, Argiope aurantia, and Araneus gemmoides. Sequencing of tubuliform silk cDNAs reveals the repetitive architecture of its coding sequence and novel amino acid motifs. The inferred protein, tubuliform spidroin 1 (TuSp1), contains highly homogenized repeats in all three spiders. Amino acid composition comparison of the predicted tubuliform silk protein sequence to tubuliform silk indicates that TuSp1 is the major component of tubuliform silk. Repeat unit alignment of TuSp1 among three spider species shows high sequence conservation among tubuliform silk protein orthologue groups. Sequence comparison among TuSp1 repetitive units within species suggests intragenic concerted evolution, presumably through gene conversion and unequal crossover events. Comparative analysis demonstrates that TuSp1 represents a new orthologue in the spider silk gene family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号