首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Rad50, Mre11 and Nbs1 complex is involved in many essential chromosomal organization processes dealing with DNA ends, including two major pathways of DNA double-strand break repair, homologous recombination and non-homologous end joining. Previous data on the structure of the human Rad50 and Mre11 (R/M) complex suggest that a common role for the protein complex in these processes is to provide a physical link between DNA ends such that they can be processed in an organized and coordinated manner. Here we describe the DNA binding properties of the R/M complex. The complex bound to both single-stranded and double-stranded DNA. Scanning force microscopy analysis of DNA binding by R/M showed the requirement for an end to form oligomeric R/M complexes, which could then migrate or transfer away from the end. The R/M complex had a lower preference for DNA substrates with 3′-overhangs compared with blunt ends or 5′-overhangs. Interestingly, ATP binding, but not hydrolysis, increased the preference of R/M binding to DNA substrates with 3′-overhangs relative to substrates with blunt ends and 5′-overhangs.  相似文献   

2.
Li J  Li C  Xiao W  Yuan D  Wan G  Ma L 《Analytical biochemistry》2008,373(2):389-391
A rapid site-directed mutagenesis strategy using homologous recombination and DpnI digestion of the template in Escherichia coli is described. Briefly, inverse polymerase chain reaction amplification of the entire circular plasmid was performed by mutagenic primers with overlapping sequences ( approximately 15 bp) for generating PCR products with approximately 15 bp of homology on the terminal ends. On direct transformation of the amplified PCR products into restriction endonuclease DpnI-expressing E. coli BUNDpnI, homologous recombination occurs in E. coli while the original templates are removed via DpnI digestion in vivo, thus yielding clones harboring mutated circular plasmids. Nearly 100% efficiency was attained when this strategy was used to modify DNA sequences.  相似文献   

3.
Overlap extension represents a new approach to genetic engineering. Complementary oligodeoxyribonucleotide (oligo) primers and the polymerase chain reaction are used to generate two DNA fragments having overlapping ends. These fragments are combined in a subsequent 'fusion' reaction in which the overlapping ends anneal, allowing the 3' overlap of each strand to serve as a primer for the 3' extension of the complementary strand. The resulting fusion product is amplified further by PCR. Specific alterations in the nucleotide (nt) sequence can be introduced by incorporating nucleotide changes into the overlapping oligo primers. Using this technique of site-directed mutagenesis, three variants of a mouse major histocompatibility complex class-I gene have been generated, cloned and analyzed. Screening of mutant clones revealed at least a 98% efficiency of mutagenesis. All clones sequenced contained the desired mutations, and a low frequency of random substitution estimated to occur at approx. 1 in 4000 nt was detected. This method represents a significant improvement over standard methods of site-directed mutagenesis because it is much faster, simpler and approaches 100% efficiency in the generation of mutant product.  相似文献   

4.
利用DREAM设计和同源重组进行一步定点突变   总被引:3,自引:1,他引:2  
目的:建立基于DREAM设计和同源重组的简便、快速定点突变方法。方法:设计两条包含突变的反向PCR(inverse PCR)引物,使其5'端互补从而产生同源重组,同时使用DREAM设计方案在上述引物中引入限制性内切酶位点以便突变子筛选。用能扩增长片段的高保真耐热 DNA聚合酶扩增全长的质粒DNA,直接转化大肠杆菌。转化到细菌中的全长质粒DNA PCR产物可利用其末端同源序列发生同源重组而环化。利用引入的酶切位点方便地进行突变子的筛选。结果:我们用该方法成功地对长度大于7 kb的质粒进行了定点突变。结论:本定点突变无需任何突变试剂盒和特殊的试剂,只需一步反应即可完成;利用DREAM设计使克隆筛选简便可靠,高保真耐热DNA聚合酶可保证多数突变子克隆不发生意外突变,而该酶扩增长片段的能力使该方法适合于大多数质粒不经亚克隆直接突变。  相似文献   

5.
目的:建立一种高效便捷的定点突变方法,为基因表达调控以及蛋白质结构和功能的研究提供技术支撑。方法:以构建单核细胞增生李斯特菌(Listeria monocytogenes)中编码胆碱水解酶(bile salt hydrolase,BSH)的bsh基因突变启动子为例,采用一对完全互补并带有突变位点的引物扩增携带bsh基因启动子的重组质粒DNA全序列,通过DpnⅠ消化PCR产物中剩余的甲基化的模板DNA,酶切后的PCR产物直接转化大肠杆菌,从而获得含有突变启动子的重组质粒。结果:通过一步法定点突变技术成功构建了bsh基因的三种突变启动子。结论:该方法简单高效,只要把握好对引物设计,高保真的DNA聚合酶、模板DNA的浓度以及PCR扩增程序的选择,突变成功率可以达到100%。  相似文献   

6.
PCR fragments and linear vectors containing overlapping ends are easily assembled into a propagative plasmid by homologous recombination in Escherichia coli. Although this gap-repair cloning approach is straightforward, its existence is virtually unknown to most molecular biologists. To popularize this method, we tested critical parameters influencing the efficiency of PCR fragments cloning into PCR-amplified vectors by homologous recombination in the widely used E. coli strain DH5α. We found that the number of positive colonies after transformation increases with the length of overlap between the PCR fragment and linear vector. For most practical purposes, a 20 bp identity already ensures high-cloning yields. With an insert to vector ratio of 2:1, higher colony forming numbers are obtained when the amount of vector is in the range of 100 to 250 ng. An undesirable cloning background of empty vectors can be minimized during vector PCR amplification by applying a reduced amount of plasmid template or by using primers in which the 5′ termini are separated by a large gap. DpnI digestion of the plasmid template after PCR is also effective to decrease the background of negative colonies. We tested these optimized cloning parameters during the assembly of five independent DNA constructs and obtained 94% positive clones out of 100 colonies probed. We further demonstrated the efficient and simultaneous cloning of two PCR fragments into a vector. These results support the idea that homologous recombination in E. coli might be one of the most effective methods for cloning one or two PCR fragments. For its simplicity and high efficiency, we believe that recombinational cloning in E. coli has a great potential to become a routine procedure in most molecular biology-oriented laboratories.  相似文献   

7.
By its functional interaction with a RecA polymer, the mutagenic UmuD′C complex possesses an antirecombination activity. We show here that MucA′B, a functional homolog of the UmuD′C complex, inhibits homologous recombination as well. In F recipients expressing MucA′B from a Ptac promoter, Hfr × F recombination decreased with increasing MucA′B concentrations down to 50-fold. In damage-induced pKM101-containing cells expressing MucA′B from the native promoter, recombination between a UV-damaged F lac plasmid and homologous chromosomal DNA decreased 10-fold. Overexpression of MucA′B together with UmuD′C resulted in a synergistic inhibition of recombination. RecA[UmuR] proteins, which are resistant to UmuD′C inhibition of recombination, are inhibited by MucA′B while promoting MucA′B-promoted mutagenesis efficiently. The data suggest that MucA′B and UmuD′C contact a RecA polymer at distinct sites. The MucA′B complex was more active than UmuD′C in promoting UV mutagenesis, yet it did not inhibit recombination more than UmuD′C does. The enhanced mutagenic potential of MucA′B may result from its inherent superior capacity to assist DNA polymerase in trans-lesion synthesis. In the course of this work, we found that the natural plasmid pKM101 expresses around 45,000 MucA and 13,000 MucB molecules per lexA(Def) cell devoid of LexA. These molecular Muc concentrations are far above those of the chromosomally encoded Umu counterparts. Plasmid pKM101 belongs to a family of broad-host-range conjugative plasmids. The elevated levels of the Muc proteins might be required for successful installation of pKM101-like plasmids into a variety of host cells.  相似文献   

8.
Although the DNA cleavage mechanism of Type I restriction–modification enzymes has been extensively studied, the mode of cleavage remains elusive. In this work, DNA ends produced by EcoKI, EcoAI and EcoR124I, members of the Type IA, IB and IC families, respectively, have been characterized by cloning and sequencing restriction products from the reactions with a plasmid DNA substrate containing a single recognition site for each enzyme. Here, we show that all three enzymes cut this substrate randomly with no preference for a particular base composition surrounding the cleavage site, producing both 5′- and 3′-overhangs of varying lengths. EcoAI preferentially generated 3′-overhangs of 2–3 nt, whereas EcoKI and EcoR124I displayed some preference for the formation of 5′-overhangs of a length of ~6–7 and 3–5 nt, respectively. A mutant EcoAI endonuclease assembled from wild-type and nuclease-deficient restriction subunits generated a high proportion of nicked circular DNA, whereas the wild-type enzyme catalyzed efficient cleavage of both DNA strands. We conclude that Type I restriction enzymes require two restriction subunits to introduce DNA double-strand breaks, each providing one catalytic center for phosphodiester bond hydrolysis. Possible models for DNA cleavage are discussed.  相似文献   

9.
目的:改进传统重叠延伸PCR方法,实现引入3个不同DNA突变位点的简便的多位点定点突变。方法:根据前期构建的包含人线粒体12S rRNA(NC 01290)3个热点突变位点的野生型质粒序列,利用Muta Primer 2.0软件设计针对3个热点突变位点的3对互补的定点突变引物,以野生型质粒为模板,结合重叠延伸PCR反应和冷冻析出法,产生同时包含3个突变位点的突变目的片段,酶切后克隆到载体中,测序确证是否突变成功。结果:DNA测序证实3个不同突变位点同时成功引入,定点突变载体构建成功。结论:用改进的重叠延伸PCR技术能简便、高效地获得多位点定点突变载体,在分子生物学领域有较高的使用价值。  相似文献   

10.
A new technique of PCR hot start using oligonucleotide primers with a stem–loop structure is developed here. The molecular beacon oligonucleotide structure without any chromophore addition to the ends was used. The 3′-end sequence of the primers was complementary to the target and five or six nucleotides complementary to the 3′-end were added to the 5′-end. During preparation of the reaction mixture and initial heating, the oligonucleotide has a stem–loop structure and cannot serve as an effective primer for DNA polymerase. After heating to the annealing temperature it acquires a linear structure and primer extension can begin.  相似文献   

11.
Genetic analysis of the Drosophila Bloom's syndrome helicase homolog (mus309/DmBLM) indicates that DmBLM is required for the synthesis-dependent strand annealing (SDSA) pathway of homologous recombination. Here we report the first biochemical study of DmBLM. Recombinant, epitope-tagged DmBLM was expressed in Drosophila cell culture and highly purified protein was prepared from nuclear extracts. Purified DmBLM exists exclusively as a high molecular weight (~1.17 MDa) species, is a DNA-dependent ATPase, has 3′→5′ DNA helicase activity, prefers forked substrate DNAs and anneals complementary DNAs. High-affinity DNA binding is ATP-dependent and low-affinity ATP-independent interactions contribute to forked substrate DNA binding and drive strand annealing. DmBLM combines DNA strand displacement with DNA strand annealing to catalyze the displacement of one DNA strand while annealing a second complementary DNA strand.  相似文献   

12.
An approach for generating structures capable of directing full-length complementary-strand synthesis for double-stranded plasmid DNA is described. The structures are formed following heat denaturation and cooling of linearized plasmid DNA molecules in the presence of what is referred to as a "closing" oligonucleotide. Consisting of a sequence complementary to the free ends of one of the two plasmid strands, the closing oligonucleotide functions as an agent for recircularization of a DNA strand and generation of a primer-circular template structure suitable for polymerase-dependent full-length complementary-strand synthesis and ligation into a covalently closed heteroduplex molecule. When combined with a mutagenic oligonucleotide and uracil-substituted DNA templates, this approach allows site-directed mutagenesis to be performed directly on double-stranded DNA with a mutant formation efficiency of about 50%, a level amenable to rapid screening by DNA sequencing.  相似文献   

13.
QuikChange is a popular method for site-directed mutagenesis in structural and functional studies of proteins and nucleic acids. However, the standard protocol is often inefficient in producing the desired mutations. Here we present a novel strategy for primer design, central overlapping primers (COP), which employs a pair of bipartite primers of different lengths, with the short primer complementary to the middle region of the long primer. The COP method is efficient and robust in generating approximately 90% mutation rate without supercompetent Escherichia coli cells or laborious screening for positive clones.  相似文献   

14.
Gene splicing and mutagenesis by PCR-driven overlap extension   总被引:2,自引:0,他引:2  
Extension of overlapping gene segments by PCR is a simple, versatile technique for site-directed mutagenesis and gene splicing. Initial PCRs generate overlapping gene segments that are then used as template DNA for another PCR to create a full-length product. Internal primers generate overlapping, complementary 3' ends on the intermediate segments and introduce nucleotide substitutions, insertions or deletions for site-directed mutagenesis, or for gene splicing, encode the nucleotides found at the junction of adjoining gene segments. Overlapping strands of these intermediate products hybridize at this 3' region in a subsequent PCR and are extended to generate the full-length product amplified by flanking primers that can include restriction enzyme sites for inserting the product into an expression vector for cloning purposes. The highly efficient generation of mutant or chimeric genes by this method can easily be accomplished with standard laboratory reagents in approximately 1 week.  相似文献   

15.
In this study, we present an efficient phosphorylation-free and ligase-free PCR-based multiple site-directed mutagenesis that allows simultaneous mutations up to six distal sites. This method could be extended to any plasmid DNA that is isolated from dam+Escherichia coli strains, and the results showed that the simultaneously mutagenic efficiencies of quadruple mutation and sextuple mutation were up to 80% and 40%, respectively.  相似文献   

16.
Yeast-based in vivo cloning is useful for cloning DNA fragments into plasmid vectors and is based on the ability of yeast to recombine the DNA fragments by homologous recombination. Although this method is efficient, it produces some by-products. We have developed an “ultra-low background DNA cloning system” on the basis of yeast-based in vivo cloning, by almost completely eliminating the generation of by-products and applying the method to commonly used Escherichia coli vectors, particularly those lacking yeast replication origins and carrying an ampicillin resistance gene (Ampr). First, we constructed a conversion cassette containing the DNA sequences in the following order: an Ampr 5′ UTR (untranslated region) and coding region, an autonomous replication sequence and a centromere sequence from yeast, a TRP1 yeast selectable marker, and an Ampr 3′ UTR. This cassette allowed conversion of the Ampr-containing vector into the yeast/E. coli shuttle vector through use of the Ampr sequence by homologous recombination. Furthermore, simultaneous transformation of the desired DNA fragment into yeast allowed cloning of this DNA fragment into the same vector. We rescued the plasmid vectors from all yeast transformants, and by-products containing the E. coli replication origin disappeared. Next, the rescued vectors were transformed into E. coli and the by-products containing the yeast replication origin disappeared. Thus, our method used yeast- and E. coli-specific “origins of replication” to eliminate the generation of by-products. Finally, we successfully cloned the DNA fragment into the vector with almost 100% efficiency.  相似文献   

17.
Homologous recombination is an important pathway for the repair of DNA double-strand breaks (DSBs). In the yeast Saccharomyces cerevisiae, Rad52 is a central recombination protein, whereas its paralogue, Rad59, plays a more subtle role in homologous recombination. Both proteins can mediate annealing of complementary single-stranded DNA in vitro, but only Rad52 interacts with replication protein A and the Rad51 recombinase. We have studied the functional overlap between Rad52 and Rad59 in living cells using chimeras of the two proteins and site-directed mutagenesis. We find that Rad52 and Rad59 have both overlapping as well as separate functions in DSB repair. Importantly, the N-terminus of Rad52 possesses functions not supplied by Rad59, which may account for its central role in homologous recombination.  相似文献   

18.
A new method is described for rapid site-directed mutagenesis of plasmid DNA. The new method, termed enzymatic inverse polymerase chain reaction (EIPCR), uses inverse PCR to amplify the entire plasmid. The key step to EIPCR is the incorporation of identical class 2s restriction sites in both primers. Class 2s restriction enzymes have a recognition site that is located 5' of the cut site (e.g., BsaI: GGTCTCN'NNNN,). Thus, after completing PCR, the ends of the full-length linearized plasmid are digested with the class 2s enzyme incorporated into the primers. The enzyme cuts off its entire recognition site and leaves the plasmid with compatible overhangs on both ends. Thus, in the ligation the only part that becomes part of the plasmid is the NNNN overhang, which can be made to be the native sequence. We have used the method for many plasmids and several class 2s enzymes. As an example, we report here the use of EIPCR for an insertion into pUC19 containing an inactive lacZ alpha-peptide, causing a frameshift that restores lacZ alpha-activity. Of 300 colonies evaluated, greater than 95% had the expected blue phenotype. The BsaI overhangs were correctly combined in all of the 35 blue colonies analyzed by restriction digestion and in all four clones that were sequenced. EIPCR is compared with four related PCR-based mutagenesis techniques. The major advantage of EIPCR over the other methods is the combination of greater than 95% correctly mutated clones with the need for only two PCR primers.  相似文献   

19.
Escherichia coli has been used for recombinant protein production for many years. However, no native E. coli promoters have been found for constitutive expression in LB medium. To obtain high-expression E. coli promoters active in LB medium, we inserted various promoter regions upstream of eEmRFP that encodes a red fluorescent protein. Among the selected promoters, only colonies of srlA promoter transformants turned red on LB plate. srlA is a gene that regulates sorbitol utilization. The addition of sorbitol enhanced eEmRFP expression but glucose and other sugars repressed, indicating that srlAp is a sorbitol-enhanced glucose-repressed promoter. To analyze the srlAp sequence, a novel site-directed mutagenesis method was developed. Since we demonstrated that homologous recombination in E. coli could occur between 12-bp sequences, 12-bp overlapping sequences were attached to the set of primers that were designed to produce a full-length plasmid, denoted “one-round PCR product.” Using this method, we identified that the srlA promoter region was 100 bp. Further, the sequence adjacent to the start codon was found to be essential for high expression, suggesting that the traditionally used restriction enzyme sites for cloning in the promoter region have hindered expression. The srlA-driven expression system and DNA manipulation with one-round PCR products are useful tools in E. coli genetic engineering.  相似文献   

20.
目的:介绍一种简便、有效的定点突变技术。方法:根据突变位点附近的DNA序列推导出氨基酸序列,再以此氨基酸序列进行逆翻译,这样在不改变氨基酸序列的前提下可以得到数目巨大的隐性突变体(silent mutants),这些突变体中包含大量的限制性内切酶位点,选择合适的酶切位点设计引物用PCR技术扩增两侧DNA片段,然后以相应酶切融合这两个片段即可完成定点突变。结果:用该方法成功地在人工合成的含有缺失的可溶性组织因子基因的472位插入C,T两个碱基,校正了阅读框架,获得了预期的目的基因。结论:该方法简便、有效, 避免了多轮PCR和合成长引物导致突变的可能性,这种改进的PCR 定点诱变技术我们称之为“设计限制酶辅助突变”(Designed Restriction Enzyme Assisted Mutagenesis, DREAM)。此技术简单方便, 诱变的成功率高, 适于实验室常规应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号