首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
我国目前已知有12种蟾蜍,其中以中华大蟾蜍(Bufo gargarizans)和花背蟾蜍(Bufo racldei)最为常见。这两种蟾蜍数量多、分布广、食性杂、食量大,能消灭大量的农林害虫,其耳后腺分泌物蟾酥可入药,是一  相似文献   

2.
为研究花背蟾蜍(Bufo raddei)蝌蚪在变态发育期皮肤的显微结构特点,选取G19、G22、G26、G36、G41、G43和G46共7个发育期蝌蚪的连续石蜡切片及成体的背部皮肤切片,采用H.E和AB-PAS染色方法,观察了皮肤各层结构的发育时序并进行了相应的测量.结果表明,在G19、G22和G26蝌蚪表皮均为1层细胞;G36蝌蚪皮肤细胞形态和层数在背腹部出现了显著的区别;在G41基本完成了表皮2层细胞的构建;G43期完成完整的真皮构建,其中分布有毛细血管和2种皮肤腺.G46皮肤在厚度、腺体和毛细血管分布等方面表现出了明显的区域性差异,并与成体皮肤结构有明显的差别,显示出蝌蚪在发育过程中皮肤结构的变化与其生存环境之间紧密的关联性.  相似文献   

3.
为了解西藏蟾蜍Bufo tibetanus与其高海拔生活环境的适应性,采用常规石蜡切片和苏木精-伊红染色方法,对西藏蟾蜍雌雄性头部、躯干和四肢的背、腹侧皮肤显微结构进行了观察、测量和比较。结果显示皮肤的基本结构与已报道的无尾两栖类相似,由表皮和真皮组成。表皮较薄,由5~8层细胞构成,由外到内分为角质层、中间层和基底层。真皮较厚,分为疏松层和致密层。各部位大多表现为背侧皮肤厚度大于腹侧,相应部位大多为雌性大于雄性。皮肤厚度的变化在一定程度上与西藏蟾蜍运动方式和繁殖期间抱对行为相适应。皮肤腺体分粘液腺和颗粒腺2种。色素细胞主要分布在疏松层近表皮处,但在表皮和腺体周围也可见色素细胞的不连续分布。皮肤中毛细血管极其丰富,不仅在表皮下几乎成连续分布,而且在腺体周围也有密集分布。西藏蟾蜍皮肤结构明显表现出与生活环境中强紫外辐射和缺氧环境相适应的特点。  相似文献   

4.
目的:探索两栖类动物消化道黏液细胞的类型与分布规律。方法:利用阿利新蓝与过碘酸雪夫试剂染色法对中华蟾蜍(Bufo bufo gargazizans)、黑斑蛙(Rana nigromaculata)消化道黏液细胞进行石蜡切片和染色。结果与结论:黏液细胞表现为4个类型:Ⅰ型玫瑰红色;Ⅱ型蓝绿色;Ⅲ型紫红色;Ⅳ型蓝紫色。两种动物食管黏膜上皮中黏液细胞主要是杯状细胞,其中中华蟾蜍的黏液细胞主要为Ⅱ型和Ⅳ型细胞,黑斑蛙的黏液细胞主要Ⅲ型细胞。胃体柱状黏膜上皮细胞与胃腺颈细胞主要为Ⅰ型和Ⅲ型细胞,黏原颗粒主要集中在细胞的核上区。胃腺浅部有成团分布并着色较浅的黏液细胞,其中黑斑蛙胃腺黏液细胞主要为Ⅰ型和Ⅲ型细胞,中华蟾蜍胃腺黏液细胞主要为Ⅲ型和Ⅳ型细胞。小肠杯状细胞主要为Ⅲ型和Ⅳ型细胞。大肠杯状细胞主要为Ⅱ型和Ⅳ型细胞。  相似文献   

5.
两栖动物皮肤的显著特征之一是外分泌腺体遍布全身,这些腺体释放的分泌物在繁殖、交流和防御等方面起重要作用。本研究利用组织学技术,对海南原指树蛙(Kurixalus hainanus)头部、背部、体侧、颏部以及腹部的皮肤样本进行了显微结构(包括H.E、AB-PAS和Masson三色染色方法)和超微结构的观察,并利用线性混合效应模型对皮肤厚度、腺体分布和大小进行了统计分析。显微结构的观察和分析结果显示,海南原指树蛙的皮肤中仅有黏液腺(Ⅰ型黏液腺和Ⅱ型黏液腺)和颗粒腺,未发现特化腺体。皮肤腺体的种类未发现性别差异,但同性别个体的皮肤厚度、腺体的分布和大小存在部位差异,且这些指标在特定部位存在性别差异。皮肤厚度的差异可能与海南原指树蛙的运动方式和繁殖方式相适应,腺体分布和大小的差异可能与防御功能和性别二态性有关。超微结构观察结果显示,黏液腺含有中、高电子密度的黏液颗粒;颗粒腺的分泌颗粒有接触相融的现象,可能是一种物质成熟的阶段性反应。本研究为蛙类皮肤结构、腺体种类和分布提供了基础资料,为后续开展海南原指树蛙挥发性分泌物的化学成分研究提供了形态学基础。  相似文献   

6.
隆肛蛙皮肤及其腺体的显微结构特征   总被引:7,自引:2,他引:5  
观察了隆肛蛙(Paa quadranus)皮肤及其腺体的显微结构特点,主要对成体、幼蛙和蝌蚪泄殖腔上方皮肤腺进行了描述和比较。结果表明,隆肛蛙的表皮和真皮内均分布有微血管及黑色素细胞;皮肤腺为泡状腺,腺泡位于真皮浅层的疏松层内,属顶质分泌的粘液腺;雄性成体泄殖腔上方皮肤腺是隆肛蛙的特有结构,属于雄性的第二性征,本文建议称其为肛上腺(supra-anal gland)。文中对肛上腺及其机能、表皮中微血管与皮肤呼吸、黑色素细胞与体温调节等之间的关系进行了讨论。  相似文献   

7.
中华大蟾蜍和花背蟾蜍染色体同源性研究   总被引:2,自引:0,他引:2  
本文以培养 扣华大蟾蜍、花背蟾蜍的外周血淋巴细胞为实验材料,采用BrdU南极洲民法和胸苷标记的方法,获得了中华大蟾蜍与花背蟾蜍析搞分辨晚复制带,确定了中华大蟾蜍每一染色体的特征性晚复制区,并就中华大蟾蜍与花背蟾蜍的晚复纹带进行了精确比较,发现中华大蟾蜍与花背蟾蜍的染色体之间具有极高同源性,该结果说明,在相同的培养条件下,只要BrdU掺入S期的时间较为统一,显示复制带的条件基本一致的情况下,利用复  相似文献   

8.
花背蟾蜍蝌蚪胃的发育形态学观察   总被引:1,自引:0,他引:1  
应用大体解剖、组织切片和扫描电镜3种形态学方法对花背蟾蜍(Bufo raddei)蝌蚪在生长发育和变态过程中胃的形态结构变化进行了观察。结果显示,在蝌蚪发育24期(即G24)消化道呈简单的管状结构,胃与小肠等区分不明显,胃壁由内层矮柱状黏膜上皮细胞和其外的扁平上皮细胞层构成;直到26期胃略膨大,呈短粗管状,与小肠和食道可明显区分,胃壁内层的黏膜上皮细胞呈高柱状,上皮细胞间出现少量杯状细胞;36期的胃管明显膨大,其壁已具有胃的4层基本组织结构,杯状细胞数量增加,黏膜上皮细胞游离面有细长的微绒毛交织成网状覆盖;42期胃发育呈"C"字形,胃壁具备了消化道典型的4层结构,有胃腺芽出现,黏膜细胞的微绒毛短而直立,仅极少数细胞有长的微绒毛;蝌蚪发育到46期,肠道缩短,胃呈"J"字状,占消化道大部分,胃体中胃腺发达。在临近肝一侧,黏膜上皮细胞的微绒毛较短,胃腺少而小;而在相反一侧,微绒毛较长,胃腺多而大。基于上述结果说明,花背蟾蜍蝌蚪胃在36期已经基本完成了组织结构的分化,在变态发育期间结构和功能得到进一步完善,以适应变态后陆地生活的食性变化。  相似文献   

9.
绿蟾蜍繁殖期间输卵管变化的组织学研究   总被引:2,自引:0,他引:2  
本文研究了绿蟾蜍繁殖期间输卵管组织结构变化的规律。产卵前,输卵管壁最厚,固有层中的单管状腺充满胶质;产卵时,粘膜层形成细长的皱襞,固有层中的腺体分泌胶质,形成包裹卵子的卵胶膜;产卵后,输卵管壁变薄,腺体细胞缩小,但腺体间的结缔组织隔膜增厚,结缔组织可能对腺体细胞的修复起重要作用。  相似文献   

10.
花背蟾蜍   总被引:1,自引:0,他引:1  
花背蟾蜍(Bufo raddei)是我国北方习见的一种无尾两栖动物,属蟾蜍科蟾蜍属,又称芮氏蟾蜍。体长50—75毫米,体背具橄榄黄色或浅绿色不规则花斑,雌者更具鲜艳的红棕色花纹。体表粗糙有许多突起的小疣粒,雄者尤为明显,疣粒上多具红点,背中线有浅绿色纵纹,前肢内侧三指基部有明显的黑色突起,称婚垫,繁殖时用以抱雌,下颌具单一内声囊,鸣叫时,下颌皮肤外突呈白色半圆形,雌雄均具扁平而宽大的耳后腺,能分泌橙黄色带硫磺气味的分泌  相似文献   

11.
We investigated the relationships of Asian bufonids using partial sequences of mitochondrial DNA genes. Twenty-six samples representing 14 species of Bufo from China and Vietnam and 2 species of Torrentophryne from China were examined. Three samples of Bufo viridis from Armenia and Georgia were also sequenced to make a comparison to its sibling tetraploid species B. danatensis. Bufo americanus, from Canada, was used as the outgroup. Sequences from the 12S ribosomal RNA, 16S ribosomal RNA, cytochrome b, and the control region were analyzed using parsimony. East Asian bufonids were grouped into two major clades. One clade included B. andrewsi, B. bankorensis, B. gargarizans, B. tibetanus, B. tuberculatus, its sister clade B. cryptotympanicus, and the 2 species of Torrentophryne. The second clade consisted of B. galeatus, B. himalayanus, B. melanostictus, and a new species from Vietnam. The placement of three taxa (B. raddei, B. viridis, and its sister species, B. danatensis) was problematic. The genus Torrentophryne should be synonymized with Bufo to remove paraphyly. Because B. raddei does not belong to the clade that includes B. viridis and B. danatensis, it was removed from the viridis species group. The species status of B. bankorensis from Taiwan is evaluated.  相似文献   

12.
《Ecology and evolution》2017,7(21):8950-8957
The parotoid macroglands of bufonid anurans store (and can expel) large volumes of toxic secretions and have attracted detailed research. However, toxins also are stored in smaller glands that are distributed on the limbs and dorsal surface of the body. Female and male cane toads (Rhinella marina ) differ in the location of toxin‐storage glands and the extent of glandular structures. Female toads store a larger proportion of their toxins in the parotoids than males as well as (to a lesser extent) in smaller glands on the forelimbs. Males have smaller and more elongate parotoids than females, but glands cover more of the skin surface on their limbs (especially hindlimbs) and dorsal surface. The delay to toxin exudation in response to electrostimulation varied among glands in various parts of the body, and did so differently in males than in females. The spatial distribution of toxin glands differs between the sexes even in toads that have been raised under standardized conditions in captivity; hence, the sexual dimorphism is due to heritable factors rather than developmentally plastic responses to ecological (e.g., habitat, predation risk) differences between the sexes. The selective advantages of this sexual dimorphism remain unclear. A priori, we might expect to see toxin widely dispersed across any part of the body likely to be contacted by a predator; and a wide distribution also would be expected if the gland secretions have other (e.g., male–male rivalry) functions. Why, then, is toxin concentrated in the parotoids, especially in female toads? That concentration may enhance the effectiveness of frontal displays to deter predation and also may facilitate the transfer of stored toxins to eggs.  相似文献   

13.
The parotoid glands of toads (Bufonidae) consist of large aggregations of granular glands located between the otic region of the skull and the scapular region. To determine the circulatory pattern of these glands, we perfused the vascular systems of Bufo alvarius, B. marinus, B. terrestris, and B. valliceps with either India ink or Microfil, a fine latex. The perfused glands were studied by gross dissection, microscopic examination, and histology. The vascular patterns of the parotoid glands were compared to the arrangement of vessels in the dorsal skin of Rana sphenocephala (Ranidae), a frog that lacks parotoid glands. The parotoid glands of the four species of toads are supplied with blood by the lateral and dorsal cutaneous arteries and are drained by one or more branches of the internal jugular vein. The dorsal cutaneous artery supplies most of the blood to the parotoid glands in B. terrestris and B. valliceps. In B. alvarius and B. marinus, both the lateral and dorsal cutaneous arteries serve major roles in the blood supply of the glands. These patterns of blood flow have not been described previously for parotoid glands and conflict with earlier accounts for B. alvarius and B. marinus. The arteries and veins associated with the parotoid glands of toads are present in R. sphenocephala, but are arranged differently. In R. sphenocephala, the lateral cutaneous artery supplies the dorsal and lateral skin posterior to the shoulder region, whereas the dorsal cutaneous artery supplies the skin of the shoulder region. In toads, both the lateral and dorsal cutaneous arteries supply the skin of the shoulder region and ramify into subcutaneous capillaries that surround the secretory units of the parotoid glands. Extensive vasculature presumably is important for delivering cholesterol and other precursor molecules to the parotoid glands, where those compounds are converted into toxins.  相似文献   

14.
实验室条件下,通过活动性水平,变态时的体重、增长率和完成变态所需时间考察同水塘分布的中华蟾蜍(Bufo gargarizans)和高原林蛙蝌蚪(Rana kukunoris)的竞争策略。实验按照2×3因子设计,即:食物资源2个水平(高、低),组合方式3个水平(10只中华蟾蜍蝌蚪,记为B组;5只中华蟾蜍蝌蚪和5只高原林蛙蝌蚪,记为BR组;10只高原林蛙蝌蚪,记为R组)。中华蟾蜍蝌蚪的活动性在食物水平低时显著低于食物水平高时,而高原林蛙蝌蚪的活动性在不同食物水平下无显著差异;食物水平低时,混合组的高原林蛙蝌蚪变态时体重和体重增长率都显著高于R组,而混合组中华蟾蜍蝌蚪与B组相比无显著差异;在不同处理组中,食物水平低时混合组中华蟾蜍蝌蚪幼体期最短。这些结果表明:中华蟾蜍蝌蚪在不同食物资源条件下所选择的生存策略可能不同,即食物资源充足时,增加活动性获取更多食物;食物资源有限时,降低活动性且提前完成变态;与中华蟾蜍蝌蚪相比,在食物资源有限时高原林蛙蝌蚪获取食物能力更强。  相似文献   

15.
《Journal of morphology》2017,278(5):652-664
Chemical defenses in amphibians are a common antipredatory and antimicrobial strategy related to the presence of dermal glands that synthesize and store toxic or unpalatable substances. Glands are either distributed throughout the skin or aggregated in multiglandular structures, being the parotoids the most ubiquitous macrogland in toads of Bufonidae. Even though dermal glands begin to develop during late‐larval stages, many species, including Rhinella arenarum , have immature glands by the end of metamorphosis, and their post‐metamorphic growth is unknown. Herein, we compared the post‐metamorphic development of parotoids and dorsal glands by histological and allometric studies in a size series of R. arenarum . Histological and histochemical studies to detect proteins, acidic glycoconjugates, and catecholamines, showed that both, parotoids and dorsal glands, acquire characteristics of adults in individuals larger than 50 mm; that is, a moment in which the cryptic coloration disappears. Parotoid height increased allometrically as a function of body size, whereas the size of small dorsal glands decreased with body size. The number of glands in the dorsum was not linearly related to body size, appearing to be an individual characteristic. Only adult specimens had intraepithelial granular glands in the duct of the largest glands of the parotoids. Since toxic secretions accumulate in the central glands of parotoids, allometric growth of parotoids may translate into greater protection from predators in the largest animals. Conversely, large glands in the dorsum, which produce a proteinaceous secretion of unknown function, grow isometrically to body size. Some characteristics, like intraepithelial glands in the ducts and basophilic glands in the dorsum, are limited to adults.  相似文献   

16.
目的分析花背蟾蜍(Bufo Raddei)的分布、生活习性和繁殖行为,并对其进行环境污染物的检测研究进行总结。方法对花背蟾蜍的相关研究文章进行收集,并结合实地调查和观察的数据进行统计分析。结果花背蟾蜍及其蝌蚪在外周血红细胞微核及核异常、血清和肝脏抗氧化酶及脂质过氧化产物MDA、精子结构和活性、蝌蚪生长发育和肾脏结构等方面均表现出对环境污染物的极敏感性。结论花背蟾蜍可作为我国北方环境检测的首选两栖类物种。  相似文献   

17.
将非洲爪蟾胚胎细胞核移入花背蟾蜍成熟未受精卵后,得到了发育至各期的胚胎。对发育不同的时期的胚胎,进行了乳酸脱氢酶同工酶谱及染色体组型分析,结果一显示其均与受体一致。根据实验分析认为,非洲爪蟾的胚胎细胞进入花背蟾蜍成熟卵后,引起的是花背蟾蜍的单性发育。  相似文献   

18.
Mucous consists of glycoproteins and proteoglycans produced by specific secretory cells (mucocytes). In anurans the cutaneous mucous is produced by intradermal glands and displays both mechanical and chemical protection functions. Indeed, mucous maintains the integument moist and facilitates gas exchange (cutaneous respiration). In this work, the carbohydrate moiety distribution was investigated in the integument of Bufo ictericus using conventional and lectin histochemistry to describe the pattern of cutaneous glycoconjugate expression, including both secretory and structural proteoglycans. As a preliminary step, the descendent chromatography in Whatmann 1MM paper was undertaken to prepare the histochemical trials involving the lectins. In B. ictericus, the integument exhibits the basic morphological structure found in lower terrestrial vertebrates: the epidermis is a keratinized squamous stratified epithelium supported by spongious and compact layers. The spongy dermis contain secretory portion of both mucous and serous (or poison) glands. The paper chromatography identified galactose, fucose and mannose as characteristic sugar residues. The secretory cells of the mucous gland in the dermis, as well as the interstice between the stratum corneum and the subjacent stratum spinosum in the epidermis exhibit alpha-l-fucose and alpha-galactose residues. The serous glands give no reaction. The alpha-mannose residue was detected in the extracellular matrix of spongious dermis, but not in the dermal glands. The different glycoconjugate location reflects in two glycoconjugates categories: the secretory which participate in the water flow regulation, and the structural which is involved in the dermal maintenance.  相似文献   

19.
季节及人工低温对大蟾蜍肌组织ATP酶的影响研究   总被引:1,自引:0,他引:1  
本文研究了大蟾蜍心肌和腓肠肌肌球蛋白钙激活ATP酶的活性。实验结果显示,大蟾蜍心肌和腓肠肌肌球蛋白钙激话ATP酶活性具有不同的季节变化规律。并且这种酶活性的季节变化不受人工低温环境因素的影响。此外,大蜍蟾心肌中ATP酶的活性始终高于腓肠肌的。上述酶活性的变化均具有一定的生理意义。  相似文献   

20.

Background

Amphibian defence against predators and microorganisms is directly related to cutaneous glands that produce a huge number of different toxins. These glands are distributed throughout the body but can form accumulations in specific regions. When grouped in low numbers, poison glands form structures similar to warts, quite common in the dorsal skin of bufonids (toads). When accumulated in large numbers, the glands constitute protuberant structures known as macroglands, among which the parotoids are the most common ones. This work aimed at the morphological and biochemical characterization of the poison glands composing different glandular accumulations in four species of toads belonging to group Rhinella marina (R. icterica, R. marina, R. schneideri and R. jimi). These species constitute a good model since they possess other glandular accumulations together with the dorsal warts and the parotoids and inhabit environments with different degrees of water availability.

Results

We have observed that the toads skin has three types of poison glands that can be differentiated from each other through the morphology and the chemical content of their secretion product. The distribution of these different glands throughout the body is peculiar to each toad species, except for the parotoids and the other macroglands, which are composed of an exclusive gland type that is usually different from that composing the dorsal warts. Each type of poison gland presents histochemical and biochemical peculiarities, mainly regarding protein components.

Conclusions

The distribution, morphology and chemical composition of the different types of poison glands, indicate that they may have different defensive functions in each toad species.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号