首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
This study introduces the construction of the first intraspacific genetic linkage map of the A-genome diploid cotton with newly developed simple sequence repeat (SSR) markers using 189 F2 plants derived from the cross of two Asiatic parents were detected using 6 092 pairs of SSR primers. Two-hundred and sixty-eight pairs of SSR pdmers with better polymorphisms were picked out to analyze the F2 population. In total, 320 polymorphic bands were generated and used to construct a linkage map with JoinMap3.0. Two-hundred and sixty-seven loci, Including three phenotypic traits were mapped at a logarithms of odds ratio (LOD) ≥ 3.0 on 13 linkage groups. The total length of the map was 2 508.71 cM, and the average distance between adjacent markers was 9.40 cM. Chromosome assignments were according to the association of linkages with our backbone tetraploid specific map using the 89 similar SSR loci. Comparisons among the 13 suites of orthologous linkage groups revealed that the A-genome chromosomes are largely collinear with the At and Dt sub-genome chromosomes. Chromosomes associated with inversions suggested that allopolyploidization was accompanied by homologous chromosomal rearrangement. The inter-chromosomal duplicated loci supply molecular evidence that the A-genome diploid Asiatic cotton is paleopolyploid.  相似文献   

2.
Verticillium wilt is one of the most serious constraints to cotton production in almost all of the cotton-growing countries. In this study, "XinLuZaol" (XLZl), a susceptible cultivar Gossypium hirsutum L. and "Hai7124" (H7124), a resistant line G. barbadense, and their F2:3 families were used to map and study the disease index induced by verticillium wilt. A total of 430 SSR loci were mapped into 41 linkage groups; the map spanned 3 745.9 cM and the average distance between adjacent loci was 8.71 cM. Four and five quantitative trait loci (QTLs) were detected based on the disease index investigated on July 22 and August 24 in 2004, respectively. These nine QTLs explained 10.63-28.83% of the phenotypic variance, six of them were located on the D sub-genome. Two QTLs located in the same marker intervals may partly explain the significant correlation of the two traits. QTLs explaining large phenotypic variation were identified in this study, which may be quite useful in cotton anti-disease breeding.  相似文献   

3.
Non-heading Chinese cabbage (Brassica carnpestris ssp. chinensis Makino) is one of the most important vegetables in eastern China. A genetic linkage map was constructed using 127 doubled haploid (DH) lines, and the DH population was derived from a commercial hybrid "Hanxiao" (lines SW-13 x L-118). Out of the 614 polyrnorphic markers, 43.49% were not assigned to any of the linkage groups (LGs). Chi-square tests showed that 42.67% markers were distorted from expected Mendelian segregation ratios, and the direction of distorted segregation was mainly toward the paternal parent L-118. After sequentially removing the markers that had an interval distance smaller than 1 cM from the upper marker, the overall quality of the linkage map was increased. Two hundred and sixty-eight molecular markers were mapped into 10 LGs, which were anchored to the corresponding chromosome of the B. rapa reference map based on com- mon simple sequence repeat (SSR) markers. The map covers 973.38 cM of the genome and the average interval distance between markers was 3.63 cM. The number of markers on each LG ranged from 18 (R08) to 64 (R07), with an average interval distance within a single LG from 1.70 cM (R07) to 6.71 cM (R06). Among these mapped markers, 169 were sequence-related amplified polymorphism (SRAP) molecular markers, 50 were SSR markers and 49 were random amplification polymorphic DNA (RAPD) markers. With further saturation to the LG9 the current map offers a genetic tool for loci analysis for important agronomic traits.  相似文献   

4.
A high-density linkage map was constructed for an F2 population derived from an Interspecific cross of cultivated allotetraploid species between Gossypium hirsutum L. and G. barbadense L. A total of 186 F2 individuals from the Interspecific cross of "CRI 36 × Hal 7124" were genotyped at I 252 polymorphic loci Including a novel marker system, target region amplification polymorphism (TRAP). The map consists of 1 097 markers, including 697 simple se- quence repeats (SSRs), 171 TRAPs, 129 sequence-related amplified polymorphisms, 98 amplified fragment length polymorphisms, and two morphological markers, and spanned 4 536.7 cM with an average genetic distance of 4.1 cM per marker. Using 45 duplicated SSR loci among chromosomes, 11 of the 13 pairs of homologous chromosomes were Identified In tetraploid cotton. This map will provide an essential resource for high resolution mapping of quantitative trait loci and molecular breeding in cotton.  相似文献   

5.
To introgress the good fiber quality and yield from Gossypium barbadense into a commercial Upland cotton variety, a high-density simple sequence repeat(SSR) genetic linkage map was developed from a BC1F1 population of Gossypium hirsutum×Gossypium barbadense. The map comprised 2,292 loci and covered 5115.16 centi Morgan(c M) of the cotton AD genome, with an average marker interval of 2.23 c M. Of the marker order for 1,577 common loci on this new map, 90.36% agrees well with the marker order on the D genome sequence genetic map. Compared with five published high-density SSR genetic maps, 53.14% of marker loci were newly discovered in this map. Twenty-six quantitative trait loci(QTLs) for lint percentage(LP) were identified on nine chromosomes. Nine stable or common QTLs could be used for marker-assisted selection. Fifty percent of the QTLs were from G. barbadense and increased LP by 1.07%–2.41%. These results indicated that the map could be used for screening chromosome substitution segments from G. barbadense in the Upland cotton background, identifying QTLs or genes from G. barbadense, and further developing the gene pyramiding effect for improving fiber yield and quality.  相似文献   

6.
The yellow color of the cocoon of the silkworm Bombyx mori is controlled by three genes, Y (Yellow haemolymph), 1 (Yellow inhibitor) and C ( Outer-layer yellow cocoon), which are located on linkage groups 2, 9 and 12, respectively. Taking advantage of a lack of crossing over in females, reciprocal backcrossed F1 (BC1) progeny were used for linkage analysis and mapping of the C gene using silkworm strains C 108 and KY, which spin white and yellow cocoons, respectively. DNA was extracted from individual pupae and analyzed for simple sequence repeat (SSR) markers. The C gene was found to be linked to seven SSR markers. All the yellow cocoon individuals from a female heterozygous backcross (BC1F) showed a heterozygous profile for SSR markers on linkage group 12, whereas individuals with light yellow cocoons showed the homozygous profile of the strain C108. Using a reciprocal heterozygous male backcross (BC1M), we constructed a linkage map of 36.4 cM with the C gene located at the distal end, and the closest SSR marker at a distance of 13.9 cM.  相似文献   

7.
Genetic mapping provides a powerful tool for quantitative trait loci (QTL) analysis at the molecular level. A simple sequence repeat (SSR) genetic map containing 590 markers and a BCI population from two cultivated tetraploid cotton (Gossypium hirsutum L.) cultivars, namely TM-1 and Hai 7124 (G. barbadense L.), were used to map and analyze QTL using the composite interval mapping (CIM) method. Thirty one QTLs, 10 for lobe length, 13 for lobe width, six for lobe angle, and two for leaf chlorophyll content, were detected on 15 chromosomes or linkage groups at logarithm of odds (LOD)≥2.0, of which 15 were found for leaf morphology at LOD≥3.0. The genetic effects of the QTL were estimated. These results are fundamental for marker-assisted selection (MAS) of these traits in tetraploid cotton breeding.  相似文献   

8.
Early bolting of Chinese cabbage (Brassica rapa L.) during spring cultivation often has detrimental effects on the yield and quality of the harvested products. Breeding late bolting varieties is a major objective of Chinese cabbage breeding programs. In order to analyze the genetic basis of bolting traits, a genetic map of B. rapa was constructed based on amplified fragment-length poiymorphism (AFLP), sequence-related amplified poiymorphism (SRAP), simple sequence repeat (SSR), random amplification of polymorphic DNA (RAPD), and isozyme markers. Marker analysis was carried out on 81 double haploid (DH) lines obtained by microspore culture from F1 progeny of two homozygous parents: B. rapa L. ssp. pekinensis (BY) (an extra-early bolting Chinese cabbage line) and B. rapa L. ssp. rapifera (MM) (an extra-late bolting European turnip line). A total of 326 markers including 130 AFLPs, 123 SRAPs, 16 SSRs, 43 RAPDs and 14 isozymes were used to construct a linkage map with 10 linkage groups covering 882 cM with an average distance of 2.71 cM between loci. The bolting trait of each DH line was evaluated by the bolting index under controlled conditions. Quantitative trait loci (QTL) analysis was conducted using multiple QTL model mapping with MapQTL5.0 software. Eight QTLs controlling bolting resistance were identified. These QTLs, accounting for 14.1% to 25.2% of the phenotypic variation with positive additive effects, were distributed into three linkage groups. These results provide useful information for molecular marker-assisted selection of late bolting traits in Chinese cabbage breeding programs.  相似文献   

9.
Using 219 F2 Individuals developed by crossing the genetic standard line TM-1 and the multiple dominant marker line T586 In Gossyplum hirsutum L., a genetic linkage map with 19 linkage groups was constructed based on simple sequence repeat (SSR) markers. Compared with our tetraploid backboned molecular genetic map from a (TM-1xHal 7124)xTM-1 BC1 population, 17 of the 19 I|nkage groups were combined and anchored to 12 chromosomes (sub-genomes). Of these groups, four morphological marker genes In T586 had been mapped Into the molecular linkage map. Meanwhile, three quantitative trait loci for lint percentage were tagged and mapped separately on the A03 linkage group and chromosome 6.  相似文献   

10.
Verticillium wilt is a destructive disease with international consequences for cotton production. Breeding broad-spectrum resistant cultivars is considered to be one of the most effective means for reducing crop losses. A resistant cotton cultivar, 60182, was crossed with a susceptible cultivar, Jun-mian 1, to identify markers for Verticillium resistance genes and validate the mode of its inheritance. Genetic segregation analysis for Verticillium wilt resistance was evaluated based upon infected leaf percentage in the seedling stage using major gene-polygene mixed inheritance models and joint analysis of P1, P2, F1, B1, B2 and F2 populations obtained from the cultivar cross. We found that resis-tance of upland cotton cultivar 60182 to isolates BP2, VD8 and T9, and their isoconcentration mixture was controlled by two major genes with additive-dominance-epistatic effects, and the inheritance of the major gene was dominant. Furthermore, a genetic linkage map was constructed using F2 segregating population and resistance phenotypic data were obtained using F2︰3 families inoculated with different isolates and detected in different developmental stages. The genetic linkage map with 139 loci was comprised of 31 linkage groups covering 1165 cM, with an average distance of 8.38 cM between two markers, or 25.89% of the cotton genome length. From 60182, we found 4 QTL on chromosome D7 and 4 QTL on D9 for BP2, 5 QTL on D7 and 9 QTL on D9 for VD8, 4 QTL on D7 and 5 QTL on D9 for T9 and 3 QTL on D7 and 7 QTL on D7 for mixed pathogens. The QTL mapping results revealed that QTL clusters with high contribution rates were screened simultaneously on chromosomes D9 and D7 by multiple interval mapping (CIM), whether from resistance phenotypic data from different developmental stages or for different isolates. The result is consistent with the genetic model of two major genes in 60182 and suggests broad-spectrum resistance to both defoliating isolates of V. dahliae and nondefoliating iso-lates. The markers associated with resistance QTL may facilitate the use of Verticillium wilt resistance genes in improving breeding programs for cotton.  相似文献   

11.
To establish a molecular‐marker‐assisted system of breeding and genetic study for Laminaria japonica Aresch., amplified fragment length polymorphism (AFLP) was used to construct a genetic linkage map of L. japonica featuring 230 progeny of F2 cross population. Eighteen primer combinations produced 370 polymorphic loci and 215 polymorphic loci segregated in a 3:1 Mendelian segregation ratio (P 0.05). Of the 215 segregated loci, 142 were ordered into 27 linkage groups. The length of the linkage groups ranged from 6.7 to 90.3 centimorgans (cM) with an average length of 49.6 cM, and the total length was 1,085.8 cM, which covered 68.4% of the estimated 1,586.9 cM genome. The number of mapped markers on each linkage group ranged from 2 to 12, averaging 5.3 markers per group. The average density of the markers was 1 per 9.4 cM. Based on the marker density and the resolution of the map, the constructed linkage map can satisfy the need for quantitative trait locus (QTL) location and molecular‐marker‐assisted breeding for Laminaria.  相似文献   

12.
AFLP genetic maps of Eucalyptus globulus and E. tereticornis   总被引:8,自引:0,他引:8  
 Amplified fragment length polymorphism (AFLP) analysis is a rapid and efficient technique for detecting large numbers of DNA markers in eucalypts. We have used AFLP markers in a two-way pseudo-testcross strategy to generate genetic maps of two clones of different Eucalyptus species (E. tereticornis and E. globulus). Of 606 polymorphic fragments scored, 487 segregated in a 1 : 1 ratio, corresponding to DNA polymorphisms heterozygous in one parent and null in the other. In the maternal E. tereticornis map, 268 markers were ordered in 14 linkage groups (919 cM); the paternal E. globulus map had 200 markers in 16 linkage groups (967 cM). Results from PGRI software were compared with MAPMAKER. The average density of markers was approximately 1 per 3.9 cM. Framework markers were ordered with an average confidence level of 90%, covering 80–100% of the estimated Eucalyptus genome size. In order to investigate the homologies between the E. tereticornis and the E. globulus genetic linkage maps, we included 19 markers segregating 3 : 1 in the analysis. Some homeologous linkage groups were recognized. The linkage data developed in these maps will be used to detect loci controlling commercially important traits. Received: 17 July 1997 / Accepted: 13 October 1997  相似文献   

13.
A genetic linkage map containing potential candidate loci for wood, fibre and floral traits has been constructed for Eucalyptus globulus (Labill.) based on the segregation of 249 codominant loci in an outbred F1 population of 148 individuals. The map contains 204 RFLP loci, including 31 cambium-specific expressed sequence tags (ESTs) and 14 known function genes, and 40 microsatellite and five isozyme loci. Independent male and female maps were constructed, and the 98 loci (39%) that segregated in both parents were used to combine the parental maps into an integrated map. The 249 loci mapped to 11 major linkage groups (n=11 in eucalypts) and a 12th small linkage group containing three loci that segregated in the male parent only. Total map distance is 1375 cM with an average interval of 6 cM. Forty one of the mapped loci identify known proteins (five isozymes) or sequences with known function (14 genes and 22 ESTs). The mapped genes include enzymes involved in lignin and cell-wall polysaccharide biosynthesis, and floral-development genes. This map will be used to locate quantitative trait loci for wood, fibre, and other traits in Eucalyptus. Received: 30 August 2000 / Accepted: 23 March 2001  相似文献   

14.
Two separate genetic linkage maps for Chinese silver birch based on inter-simple sequence repeat (ISSR) and amplified fragment-length polymorphism (AFLP) were constructed by a pseudo-testcross mapping strategy. Eighty F1 progenies were obtained from the cross between two parental trees with desirable traits (the paternal one selected from ‘Qinghai’ and the maternal one from ‘Wangqing’). A total of 46 ISSR primers and 31 AFLP primers were employed to generate 102 ISSR and 355 AFLP polymorphic markers in the F1 progenies. About 5.7% of all the markers displayed high segregation distortion with a P value below 0.01 and such markers were not used for map constructions. The paternal map consisted of 137 loci, spread over 13 groups and spanned 694.2 cM at an average distance of 5.1 cM between the markers, while in the maternal map, 147 loci were distributed in 14 groups covering a map distance about 949.62 cM at an average distance of 6.5 cM. These initial maps can serve as the basis for developing a more detailed genetic map.  相似文献   

15.
Preliminary genetic linkage maps were constructed for the Pacific abalone (Haliotis discus hannai Ino) using amplified fragment length polymorphism (AFLP), randomly amplified polymorphic DNA (RAPD), and microsatellite markers segregating in a F1 family. Nine microsatellite loci, 41 RAPD, and 2688 AFLP markers were genotyped in the parents and 86 progeny of the mapping family. Among the 2738 markers, 384 (including 365 AFLP markers, 10 RAPD markers, and 9 microsatellite loci) were polymorphic and segregated in one or both parents: 241 in the female and 146 in the male. The majority of these markers, 232 in the female and 134 in the male, segregated according to the expected 1:1 Mendelian ratio (α = 0.05). Two genetic linkage maps were constructed using markers segregating in the female or the male parent. The female framework map consisted of 119 markers in 22 linkage groups, covering 1773.6 cM with an average intermarker space of 18.3 cM. The male framework map contained 94 markers in 19 linkage groups, spanning 1365.9 cM with an average intermarker space of 18.2 cM. The sex determination locus was mapped to the male map but not to the female map, suggesting a XY-male determination mechanism. Distorted markers showing excess of homozygotes were mapped in clusters, probably because of their linkage to a gene that is incompatible between two parental populations.  相似文献   

16.
A pseudo-testcross mapping strategy was used in combination with the random amplified polymorphism DNA (RAPD) and amplified fragment length polymorphism (AFLP) genotyping methods to develop two moderately dense genetic linkage maps for Betula platyphylla Suk. (Asian white birch) and B. pendula Roth (European white birch). Eighty F1 progenies were screened with 291 RAPD markers and 451 AFLP markers. We selected 230 RAPD and 362 AFLP markers with 1:1 segregation and used them for constructing the parent-specific linkage maps. The resultant map for B. platyphylla was composed of 226 markers in 24 linkage groups (LGs), and spanned 2864.5 cM with an average of 14.3 cM between adjacent markers. The linkage map for B. pendula was composed of 226 markers in 23 LGs, covering 2489.7 cM. The average map distance between adjacent markers was 13.1 cM. Clustering of AFLP markers was observed on several LGs. The availability of these white birch linkage maps will contribute to the molecular genetics and the implementation of marker-assisted selection in these important forest species.  相似文献   

17.
We present the first genetic maps of globe artichoke (Cynara cardunculus var. scolymus L. 2n=2x=34), constructed with a two-way pseudo-testcross strategy. A F1 mapping population of 94 individuals was generated between a late-maturing, non-spiny type and an early-maturing spiny type. The 30 AFLP, 13 M-AFLP and 9 S-SAP primer combinations chosen identified, respectively, 352, 38 and 41 polymorphic markers. Of 32 microsatellite primer pairs tested, 12 identified heterozygous loci in one or other parent, and 7 were fully informative as they segregated in both parents. The female parent map comprised 204 loci, spread over 18 linkage groups and spanned 1330.5 cM with a mean marker density of 6.5 cM. The equivalent figures for the male parent map were 180 loci, 17 linkage groups, 1239.4 and 6.9 cM. About 3% of the AFLP and AFLP-derived markers displayed segregation distortion with a P value below 0.01, and were not used for map construction. All the SSR loci were included in the linkage analysis, although one locus did show some segregation distortion. The presence of 78 markers in common to both maps allowed the alignment of 16 linkage groups. The maps generated provide a firm basis for the mapping of agriculturally relevant traits, which will then open the way for the application of a marker-assisted selection breeding strategy in this species.  相似文献   

18.
Japanese lawngrass (Zoysia japonica) and Manila grass (Z. matrella) are the two most important and commonly used Zoysia species. A consensus based SSR linkage map was developed for the genus by combining maps from each species. This used previously constructed maps for two Z. japonica populations and a new map from Z. matrella. The new SSR linkage map for Z. matrella was based on 86 F2 individuals and contained 213 loci and covered a map distance of 1,351.2 cM in 32 linkage groups. Comparison of the three linkage maps constructed from populations with different genetic backgrounds indicated that most markers exhibited a consensus order, although some intervals or regions displayed discrepancy in marker orders or positions. The integrated map comprises 507 loci with a mean interval of 4.1 cM, covering a map distance of 2,066.6 cM in 22 linkage groups. The SSR-based map will allow marker-assisted selection and be useful for the mapping and cloning of economically important genes or quantitative trait loci.  相似文献   

19.
Allotetraploidy of Zoysia species with 2n=40 based on a RFLP genetic map   总被引:2,自引:0,他引:2  
 A RFLP linkage map of Zoysia spp. (2n=40), a warm-season turfgrass, was constructed by using the self-pollinated progenies obtained from an interspecific hybrid. Out of 115 DNA clones tested, 100 (87.0%), including 55 genomic clones, 38 cDNA clones, and seven gene clones encoding photosynthetic enzymes showed allelic-RFLP banding patterns among the parental accessions. We found that 26 probes detected two or more loci segregating in the self-pollinated progenies independently. The RFLP linkage map of Zoysia spp. consists of 115 loci in 22 linkage groups ranging in size from 12.5 cM to 141.3 cM with a total map distance of 1506 cM. Six RFLP loci (5.4%) showed significant segregation distortion (P<0.01). Two loci out of six were mapped to linkage group II, and another two loci were mapped to group VII. In the RFLP linkage map of zoysiagrass, five pairs of linkage groups sharing a series of duplicated loci with approximately the same order were identified. Therefore, we conclude that Zoysia spp. with 2n=40 should be considered as allotetraploids, which might have evolved from progenitors with a basic chromosome number of ten (x=10). Received: 20 March 1998 / Accepted: 17 September 1998  相似文献   

20.
With an objective to develop a genetic map in pigeon pea (Cajanus spp.), a total of 554 diversity arrays technology (DArT) markers showed polymorphism in a pigeon pea F2 mapping population of 72 progenies derived from an interspecific cross of ICP 28 (Cajanus cajan) and ICPW 94 (Cajanus scarabaeoides). Approximately 13% of markers did not conform to expected segregation ratio. The total number of DArT marker loci segregating in Mendelian manner was 405 with 73.1% (P > 0.001) of DArT markers having unique segregation patterns. Two groups of genetic maps were generated using DArT markers. While the maternal genetic linkage map had 122 unique DArT maternal marker loci, the paternal genetic linkage map has a total of 172 unique DArT paternal marker loci. The length of these two maps covered 270.0 cM and 451.6 cM, respectively. These are the first genetic linkage maps developed for pigeon pea, and this is the first report of genetic mapping in any grain legume using diversity arrays technology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号