首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   145591篇
  免费   11910篇
  国内免费   10455篇
  2024年   58篇
  2023年   1654篇
  2022年   2043篇
  2021年   6567篇
  2020年   4904篇
  2019年   6166篇
  2018年   5985篇
  2017年   4501篇
  2016年   6295篇
  2015年   9015篇
  2014年   10628篇
  2013年   11401篇
  2012年   13370篇
  2011年   12379篇
  2010年   7335篇
  2009年   6734篇
  2008年   7791篇
  2007年   6787篇
  2006年   6019篇
  2005年   5067篇
  2004年   4296篇
  2003年   3983篇
  2002年   3371篇
  2001年   2768篇
  2000年   2517篇
  1999年   2432篇
  1998年   1429篇
  1997年   1489篇
  1996年   1391篇
  1995年   1301篇
  1994年   1160篇
  1993年   903篇
  1992年   1164篇
  1991年   930篇
  1990年   808篇
  1989年   606篇
  1988年   503篇
  1987年   461篇
  1986年   338篇
  1985年   393篇
  1984年   236篇
  1983年   220篇
  1982年   123篇
  1981年   69篇
  1980年   54篇
  1979年   60篇
  1978年   31篇
  1977年   23篇
  1975年   29篇
  1974年   22篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
Fluid-structural coupling occurs when microcantilever sensors vibrate in a fluid. Due to the complexity of the mechanical characteristics of microcantilevers and lack of high-precision microscopic mechanical testing instruments, effective methods for studying the fluid-structural coupling of microcantilevers are lacking, especially for non-rectangular microcantilevers. Here, we report fluid-structure interactions (FSI) of the cable-membrane structure via a macroscopic study. The simplified aeroelastic model was introduced into the microscopic field to establish a fluid-structure coupling vibration model for microcantilever sensors. We used the finite element method to solve the coupled FSI system. Based on the simplified aeroelastic model, simulation analysis of the effects of the air environment on the vibration of the commonly used rectangular microcantilever was also performed. The obtained results are consistent with the literature. The proposed model can also be applied to the auxiliary design of rectangular and non-rectangular sensors used in fluid environments.  相似文献   
3.
4.
ObjectiveWe investigated whether glutamate, NMDA receptors, and eukaryote elongation factor-2 kinase (eEF-2K)/eEF-2 regulate P-glycoprotein expression, and the effects of the eEF-2K inhibitor NH125 on the expression of P-glycoprotein in rat brain microvessel endothelial cells (RBMECs).MethodsCortex was obtained from newborn Wistar rat brains. After surface vessels and meninges were removed, the pellet containing microvessels was resuspended and incubated at 37°C in culture medium. Cell viability was assessed by the MTT assay. RBMECs were identified by immunohistochemistry with anti-vWF. P-glycoprotein, phospho-eEF-2, and eEF-2 expression were determined by western blot analysis. Mdr1a gene expression was analyzed by RT-PCR.ResultsMdr1a mRNA, P-glycoprotein and phospho-eEF-2 expression increased in L-glutamate stimulated RBMECs. P-glycoprotein and phospho-eEF-2 expression were down-regulated after NH125 treatment in L-glutamate stimulated RBMECs.ConclusionseEF-2K/eEF-2 should have played an important role in the regulation of P-glycoprotein expression in RBMECs. eEF-2K inhibitor NH125 could serve as an efficacious anti-multidrug resistant agent.  相似文献   
5.
The development of flow cytometric biomarkers in human studies and clinical trials has been slowed by inconsistent sample processing, use of cell surface markers, and reporting of immunophenotypes. Additionally, the function(s) of distinct cell types as biomarkers cannot be accurately defined without the proper identification of homogeneous populations. As such, we developed a method for the identification and analysis of human leukocyte populations by the use of eight 10-color flow cytometric protocols in combination with novel software analyses. This method utilizes un-manipulated biological sample preparation that allows for the direct quantitation of leukocytes and non-overlapping immunophenotypes. We specifically designed myeloid protocols that enable us to define distinct phenotypes that include mature monocytes, granulocytes, circulating dendritic cells, immature myeloid cells, and myeloid derived suppressor cells (MDSCs). We also identified CD123 as an additional distinguishing marker for the phenotypic characterization of immature LIN-CD33+HLA-DR- MDSCs. Our approach permits the comprehensive analysis of all peripheral blood leukocytes and yields data that is highly amenable for standardization across inter-laboratory comparisons for human studies.  相似文献   
6.
7.
Background: An accurate assessment of ankle ligament kinematics is crucial in understanding the injury mechanisms and can help to improve the treatment of an injured ankle, especially when used in conjunction with robot-assisted therapy. A number of computational models have been developed and validated for assessing the kinematics of ankle ligaments. However, few of them can do real-time assessment to allow for an input into robotic rehabilitation programs. Method: An ankle computational model was proposed and validated to quantify the kinematics of ankle ligaments as the foot moves in real-time. This model consists of three bone segments with three rotational degrees of freedom (DOFs) and 12 ankle ligaments. This model uses inputs for three position variables that can be measured from sensors in many ankle robotic devices that detect postures within the foot–ankle environment and outputs the kinematics of ankle ligaments. Validation of this model in terms of ligament length and strain was conducted by comparing it with published data on cadaver anatomy and magnetic resonance imaging. Results: The model based on ligament lengths and strains is in concurrence with those from the published studies but is sensitive to ligament attachment positions. Conclusions: This ankle computational model has the potential to be used in robot-assisted therapy for real-time assessment of ligament kinematics. The results provide information regarding the quantification of kinematics associated with ankle ligaments related to the disability level and can be used for optimizing the robotic training trajectory.  相似文献   
8.
Cre/loxP technology is an important tool for studying cell type-specific gene functions. Cre recombinase mouse lines, including Agc1-CreERT2, Col2a1-Cre; Col2a1-CreERT2, Shh-Cre, Shh-CreERT2, and Osx-Cre, have been proven to be valuable tools to elucidate the biology of long bones, yet the information for their activity in postnatal intervertebral disc (IVD) tissues was very limited. In this study, we used R26-mTmG fluorescent reporter to systematically analyze cell specificity and targeting efficiency of these six mouse lines in IVD tissues at postnatal growing and adult stages. We found that Agc1-CreERT2 is effective to direct recombination in all components of IVDs, including annulus fibrosus (AF), nucleus pulposus (NP), and cartilaginous endplate (CEP), upon tamoxifen induction at either 2 weeks or 2 months of ages. Moreover, Col2a1-Cre targets most of the cells in IVDs, except for some cells in the outer AF (OAF) and NP. In contrast, the activity of Col2a1-CreERT2 is mainly limited to the IAF of IVD tissues at either stage of tamoxifen injection. Similarly, Shh-Cre directs recombination specifically in all NP cells, whereas Shh-CreERT2 is active only in a few NP cells when tamoxifen is administered at either stage. Finally, Osx-Cre targets cells in the CEP, but not in the NP or AF of IVDs tissues at these two stages. Thus, our data demonstrated that all these Cre lines can direct recombination in IVD tissues at postnatal stages with different cell type specificity and/or targeting efficiency, and can, therefore, serve as valuable tools to dissect cell type-specific gene functions in IVD development and homeostasis.  相似文献   
9.
World Journal of Microbiology and Biotechnology - Antibiotic and arsenic (As) contaminations are worldwide public health problems. Previously, the bacterial ABC-type efflux protein MacAB reportedly...  相似文献   
10.
Waterlogging is one of the major stresses limiting crop production worldwide. The understanding of the mechanisms of plant adaptations to waterlogging stress helps improve plant tolerance to stress. In this study, physiological responses and morpho-anatomical adaptations of seven different barley genotypes were investigated under waterlogging stress. The results showed that the waterlogging-tolerant varieties (TX9425, Yerong, TF58) showed less reduction in plant height, SPAD (soil–plant analyses development analyses) value, tillers, shoot and root biomasses than did the waterlogging-sensitive varieties (Franklin, Naso Nijo, TF57). Under waterlogging stress condition, the tolerant genotypes also showed a much larger number of adventitious roots than did the sensitive genotypes. More intercellular spaces and better integrated chloroplast membrane structures were observed in the leaves of the waterlogging-tolerant cultivars, which is likely due to increased ethylene content, decreased ABA content and less accumulation of O2.?. The ability to form new adventitious roots and intercellular spaces in shoots can also be used as selection criteria in breeding barley for waterlogging tolerance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号