首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
尽管根系分泌物在调控森林土壤功能和土壤生物地球化学循环过程中具有重要作用,但目前关于N沉降下森林根系分泌物输入特征及其介导的根际土壤C、N过程认识还甚为有限.本研究以川中丘陵地区典型柏树人工林为试验对象,通过不同N添加水平模拟N沉降强度,于2020年不同季节对根系分泌物进行原位收集和分析,并同步分析了根际与非根际土壤的...  相似文献   

2.
根系分泌物是植物与土壤进行物质交换和信息传递的重要载体物质, 是植物响应外界胁迫的重要途径, 是构成植物不同根际微生态特征的关键因素, 也是根际对话的主要调控者。根系分泌物对于生物地球化学循环、根际生态过程调控、植物生长发育等均具有重要功能, 尤其是在调控根际微生态系统结构与功能方面发挥着重要作用, 调节着植物-植物、植物-微生物、微生物-微生物间复杂的互作过程。植物化感作用、作物间套作、生物修复、生物入侵等都是现代农业生态学的研究热点, 它们都涉及十分复杂的根际生物学过程。越来越多的研究表明, 不论是同种植物还是不同种植物之间相互作用的正效应或是负效应, 都是由根系分泌物介导下的植物与特异微生物共同作用的结果。近年来, 随着现代生物技术的不断完善, 有关土壤这一“黑箱”的研究方法与技术取得了长足的进步, 尤其是各种宏组学技术(meta-omics technology), 如环境宏基因组学、宏转录组学、宏蛋白组学、宏代谢组学等的问世, 极大地推进了人们对土壤生物世界的认知, 尤其是对植物地下部生物多样性和功能多样性的深层次剖析, 根际生物学特性的研究成果被广泛运用于指导生产实践。深入系统地研究根系分泌物介导下的植物-土壤-微生物的相互作用方式与机理, 对揭示土壤微生态系统功能、定向调控植物根际生物学过程、促进农业生产可持续发展等具有重要的指导意义。该文综述了根系分泌物的概念、组成及功能, 论述了根系分泌物介导下植物与细菌、真菌、土壤动物群之间的密切关系, 总结了探索根际生物学特性的各种研究技术及其优缺点, 并对该领域未来的研究方向进行了展望。  相似文献   

3.
《植物生态学报》2014,38(3):298
根系分泌物是植物与土壤进行物质交换和信息传递的重要载体物质, 是植物响应外界胁迫的重要途径, 是构成植物不同根际微生态特征的关键因素, 也是根际对话的主要调控者。根系分泌物对于生物地球化学循环、根际生态过程调控、植物生长发育等均具有重要功能, 尤其是在调控根际微生态系统结构与功能方面发挥着重要作用, 调节着植物-植物、植物-微生物、微生物-微生物间复杂的互作过程。植物化感作用、作物间套作、生物修复、生物入侵等都是现代农业生态学的研究热点, 它们都涉及十分复杂的根际生物学过程。越来越多的研究表明, 不论是同种植物还是不同种植物之间相互作用的正效应或是负效应, 都是由根系分泌物介导下的植物与特异微生物共同作用的结果。近年来, 随着现代生物技术的不断完善, 有关土壤这一“黑箱”的研究方法与技术取得了长足的进步, 尤其是各种宏组学技术(meta-omics technology), 如环境宏基因组学、宏转录组学、宏蛋白组学、宏代谢组学等的问世, 极大地推进了人们对土壤生物世界的认知, 尤其是对植物地下部生物多样性和功能多样性的深层次剖析, 根际生物学特性的研究成果被广泛运用于指导生产实践。深入系统地研究根系分泌物介导下的植物-土壤-微生物的相互作用方式与机理, 对揭示土壤微生态系统功能、定向调控植物根际生物学过程、促进农业生产可持续发展等具有重要的指导意义。该文综述了根系分泌物的概念、组成及功能, 论述了根系分泌物介导下植物与细菌、真菌、土壤动物群之间的密切关系, 总结了探索根际生物学特性的各种研究技术及其优缺点, 并对该领域未来的研究方向进行了展望。  相似文献   

4.
目前缺乏对根系分泌物通量以及相关生态后果对不同氮(N)沉降水平响应方向和幅度的深入理解,该研究以西南亚高山典型的红桦(Betula albosinensis)林为研究对象,通过野外原位N添加试验模拟不同氮沉降水平(对照组,0 kg?hm-2?a-1;低氮处理,25 kg?hm-2?a-1;高氮处理,50 kg?hm-2?a-1),分析了红桦林根系分泌物C输入通量及其介导的根际土壤养分循环过程对不同N添加水平的差异化响应,试图揭示不同N添加处理对红桦根系分泌物C输入通量及其介导的土壤养分转化过程的影响。结果表明:(1)N添加显著抑制了红桦林根系分泌物C输入速率(其中低氮(N25)条件下单位根生物量根系分泌速率均值降低约14.87%)和年C输入通量(低氮条件下降低了约45.01%)(P<0.05),其高氮处理的抑制效应更强。(2)N添加显著抑制了红桦林N矿化速率及其相关的微生物胞外酶活性(P<0.05),并显著降低了其根际效应;N沉降显著抑制了根系分泌物C输入通量及其介导的土壤养分转化过程,并且这种抑制效应随N沉降水平的升高而增强。该研究结果可丰富全球气候变化下森林地下碳养分循环过程的认识和理解。  相似文献   

5.
植物根系分泌物主要生态功能研究进展   总被引:1,自引:0,他引:1  
根系分泌物在植物根系-土壤-微生物互作过程及其生态反馈机制中发挥重要作用。在植物根际复杂网络互作过程中, 根系分泌物被认为是“根际对话”的媒介, 其在调控植物适应微生境、缓解根际养分竞争及构建根际微生物群落结构方面意义重大。该文结合国内外该领域主要研究成果, 综述了根系分泌物对植物生长、土壤微生物特性及土壤养分循环的影响, 并展望了未来根系分泌物的研究方向。  相似文献   

6.
Research Advances in the Main Ecological Functions of Root Exudates   总被引:2,自引:0,他引:2  
根系分泌物在植物根系-土壤-微生物互作过程及其生态反馈机制中发挥重要作用。在植物根际复杂网络互作过程中, 根系分泌物被认为是“根际对话”的媒介, 其在调控植物适应微生境、缓解根际养分竞争及构建根际微生物群落结构方面意义重大。该文结合国内外该领域主要研究成果, 综述了根系分泌物对植物生长、土壤微生物特性及土壤养分循环的影响, 并展望了未来根系分泌物的研究方向。  相似文献   

7.
文章主要以根系分泌物为核心, 综述了根系分泌物的分类、发生机理及影响因素; 围绕着植物-土壤-微生物三者的关系, 阐述了根系分泌物介导的植物与植物之间的化感作用、植物与根际微生物之间的协同作用以及植物微生物相互作用对土壤物质循环的影响。水生植物以其生境的特殊性和功能的不可替代性, 对沉积物污染物去除和水体生态修复产生显著的影响。在水体生态问题较为严峻的今天, 充分认识水生植物根系分泌物介导的根际过程将为水生植物生态学和水体生态修复领域的发展提供基础, 并为学科应用潜力的开发提供依据。  相似文献   

8.
连作障碍与根际微生态研究Ⅰ.根系分泌物及其生态效应   总被引:66,自引:7,他引:59  
作物、蔬菜、果树以及苗木长期连作后,皆出现生长衰退和产量降低.许多研究结果表明,连作条件下土壤生态环境对植物生长有很大的影响,尤以植物残体与病原微生物的分解产物,对植物有致毒作用,并影响植物根系分泌物正常代谢,以致于发生自毒作用.本文围绕根系分泌物与根际微生态的相互关系,系统地介绍连作障碍条件下,影响根系分泌物的环境因素(土壤空气、湿度、养分与微生物)、活性物质(自身毒素、残体分解物、微生物产生毒素)、土壤病原菌等的根际效应,为深入研究根系分泌物与连作障碍的相互作用机制提供启示.  相似文献   

9.
不同植物根际土壤碳氮水解酶活性热点区的空间分布特征   总被引:2,自引:0,他引:2  
刘霜  张心昱 《生态学报》2020,40(13):4462-4469
为研究喀斯特退耕地不同植物根际土壤碳氮水解酶活性的空间分布特征,采用喀斯特区域农田表层土壤,选择当地粮食作物玉米、牧草苜蓿及弃耕后常见草本植物莎草,进行室内根盒培养试验。利用根际土壤原位酶谱分析技术,研究不同植物根际与非根际土壤β-葡萄糖苷酶(βG)和N-乙酰氨基葡萄糖苷酶(NAG)活性的分布模式。结果发现:1)3种植物在根尖和根伸长区都存在酶活性热点区,最大根际酶活性热点区范围为苜蓿莎草玉米;2)玉米βG和NAG根际酶活性热点范围在根尖与根伸长区范围相近约为1.13 mm,苜蓿根际βG热点区范围是根伸长区(1.98 mm)根尖(1.19 mm),而NAG热点区范围是根尖(0.91 mm)根伸长区(0.59 mm),莎草根际βG和NAG活性热点区范围均是根尖(1.38—1.86 mm)根伸长区(0.93—1.16 mm);3)豆科植物苜蓿的根系和根际微生物偏好碳需求,这可能与豆科植物的固氮功能有关,缓解氮养分需求;而莎草根系和根际微生物偏好氮养分,这与喀斯特土壤氮养分限制有关。总体上,苜蓿根际酶活性热点范围最广,根系和根际微生物偏好碳需求,而且其特有的固氮功能可缓解氮养分需求,对于喀斯特生态恢复效果更好。本研究的土壤原位酶谱法可为在根际酶活性热点区范围进行微生物养分获取机制提供定量依据。  相似文献   

10.
石油污染土壤植物-微生物修复研究进展   总被引:34,自引:0,他引:34  
依据国内外近10年来有关石油污染土壤生物修复研究的成果,综合阐述了石油污染土壤的植物修复、微生物修复及植物-微生物联合修复方法研究,重点讨论植物-微生物联合作用,主要包括植物根际微生物、根分泌物以及菌根对石油污染物降解的影响,提出了污染土壤原位修复中需要重视的问题.  相似文献   

11.
以广西桂林会仙喀斯特湿地典型芦苇植物群落为研究对象,于春、夏、秋、冬四个季节分别采集0~10cm,10~20 cm和20~30 cm不同层次的土壤样品,分析根际微生物与非根际微生物的数量特征及季节动态变化特点,探讨微生物数量对水热季节变化的响应规律。结果表明:不同季节的根际微生物与非根际微生物组成,均以细菌占绝对优势;微生物数量分布大小顺序为细菌放线菌真菌,细菌最高比例为96.62%,放线菌最高比例为35.38%,真菌的比例较低,最高仅为0.30%。细菌,真菌和放线菌的垂直变化明显,均随着土层的增加而呈现递减的趋势。不同土壤层次根际微生物与非根际微生物的季节变化一致,细菌数量表现为夏季秋季春季冬季,真菌数量表现为秋季夏季春季冬季,放线菌数量表现为秋季春季夏季冬季;细菌、放线菌、真菌的最大值分别为2.70×10~7、1.92×10~6、3.35×10~4cfu·g~-1,土壤微生物数量与土壤有机碳、全氮、全磷、全钾、速效氮、速效磷、速效钾等呈显著正相关。芦苇植物群落根际土壤微生物呈现出一定的根际效应,并与微生物数量、土壤深度、月平均降雨量和月平均气温变化等有关,而在冬季的根际效应则表现不显著。土壤养分含量是调节会仙喀斯特湿地土壤微生物数量变化的一个主要因素。  相似文献   

12.
微生物残体是稳定土壤碳库的重要来源,对退化生境碳的固持和积累具有重要意义。植物根系分泌物作为植物-土壤-微生物"交流"的媒介,是调控土壤微生物残体迁移转化的关键。因此,以极度退化草地土壤为对象,以氨基糖为标志物,模拟研究了不同氮浓度(低氮-LN:0.1 gN/kg;高氮-HN:0.2 gN/kg)和多样性(3种化合物、9种化合物)根系分泌物输入对土壤微生物残体的影响。结果表明:(1)根系分泌物输入可显著增加高寒退化草地土壤微生物残体含量,且主要由真菌残体贡献。其中高氮和低多样性处理增加最明显,微生物残体和真菌残体分别增加了101.14%,125.16%,而低氮和高多样性处理微生物残体和真菌残体仅增加了35.79%,33.51%。(2)根系分泌物的输入可增加土壤β-葡萄糖苷酶、土壤磷酸酶和过氧化物酶活性,促进微生物的生长,而降低β-N-乙酰氨基葡萄糖苷酶活性,减少微生物残体的分解。(3)回归分析结果显示,土壤微生物残体与土壤环境的C/N呈显著负相关,与微生物生物量C/N呈显著正相关。上述结果表明,在未来退化草地恢复中,可充分利用模拟根系分泌物输入的土壤固碳策略,即通过提高土壤氮的有效性,促进微生物的生长,加快代谢周转,进一步提高微生物残体含量。  相似文献   

13.
根际微型土壤动物——原生动物和线虫的生态功能   总被引:13,自引:1,他引:12  
从养分释放、土壤有机碳积累和稳定、根系激素效应、微生物多样性和功能稳定性、地上部多营养级关系及污染土壤生物修复概述了根际微型土壤动物(原生动物和线虫)对根际生态功能的影响,特别针对微型土壤动物与微生物和根系的相互作用探讨了可能的机制。微型土壤动物的选择取食、主动迁移和代谢分泌行为,不仅贡献根际生态功能,而且对土壤整体及地上部群落有强烈的影响。总之,不考虑根际微型土壤动物与微生物和根系的相互作用,就不可能对根际生态功能和调控机制有全面的认识。  相似文献   

14.
植物根际微生物群落构建的研究进展   总被引:5,自引:0,他引:5  
植物根际是指植物根系与土壤的交界面,是根系自身生命活动和代谢对土壤影响最直接、最强烈的区域,其物理、化学和生物性质不同于土体土壤。在这个区域里,与植物发生相互作用的大量微生物,被称为根际微生物。根际微生物在植物的生长发育和植物病虫害的生物防治等方面都具有十分重要的意义。本文总结了根际微生物群落构建的研究现状,介绍了根际微生物的经典和最新的研究方法,包括根箱法、同位素技术以及高通量测序、菌群定量分析、高通量分离培养等方法在根际微生物研究中的应用,讨论了植物根系分泌物(碳水化物、氨基酸、黄酮类、酚类、激素及其信号物质)和土壤物理化学性质对根际微生物群落的影响,概述了根际微生物-植物的互作机制,以及根际微生物群落对植物的促生作用、提高植物抗逆性和抑制作用,并对根际微生物群落研究中存在的问题和未来发展方向进行了展望。  相似文献   

15.
孙雨  常晶晶  田春杰 《生态学报》2021,41(24):9963-9969
在根际微环境中,特定的土壤微生物能够利用自身独特的趋化系统感应根系分泌物,响应植物的选择性招募。细菌的趋化系统介导了植物-微生物以及微生物间相互作用,在植物对根际微生物组的选择中发挥着关键的生态学功能。综述了根际微生物组中细菌趋化系统的研究进展,从生态学的角度提出了未来针对根际细菌趋化系统的研究方向,旨在阐明根际细菌趋化系统的生态学功能,为增进理解作物根际微生物组的募集过程,以及未来农业中根际微生物组的重组构建奠定理论基础。  相似文献   

16.
植物根系对根际微环境扰动机制研究进展   总被引:1,自引:0,他引:1  
根际微环境是构建植物与土壤交流沟通的桥梁,也是植物遭受胁迫时优先作出响应的区域。植物根系作为根际的主要调控者,根构型和根系分泌物种类、数量的改变均可对根际微生物和土壤动物种群分布及其结构造成影响。然而,土壤动物的扰动、微生物的分解作用也可改善根际土壤特性,提高植物抗逆性及养分利用效率,从而促进植物根系生长。可见,植物根系-根际动物-根际微生物之间存在复杂的互作关系。本文从根际内、外微环境出发,分析了根际外植物根系对微环境的物理和化学扰动、根际内植物根系与微生物的互作扰动、根际内植物根系和土壤动物的物理扰动、以植物根系分泌物为介质的化学扰动等方面研究进展,在此基础上,论述了根际微环境主要影响因子之间的互作机制,并对该领域的研究方向进行了展望。  相似文献   

17.
重金属不同积累型植物品种的根际生态效应分析   总被引:1,自引:0,他引:1  
于辉  向言词  邹冬生 《生态科学》2016,35(4):199-204
植物对重金属的吸收积累与其根际环境密切相关, 因此对于根际生态效应的研究有助于理解不同品种积累重金属差异的机理。从根系形态、根际土壤化学特性、根系分泌物及微生物特性等方面对根际生态效应和植物积累重金属的关系进行了综述, 旨在从根际方面诠释植物积累重金属差异的机理, 并为重金属积累典型品种的选育提供理论基础。  相似文献   

18.
本文对青藏高原东缘窄叶鲜卑花高寒灌丛生长季根际和非根际土壤微生物生物量碳和氮对增温的响应进行研究.结果表明: 窄叶鲜卑花灌丛生长季初期根际和非根际土壤微生物生物量碳和氮均显著高于生长季中期和末期.在多数时期,增温对根际土壤微生物生物量碳和氮的影响不显著.在非根际土壤中,增温对土壤微生物生物量碳和氮的影响因不同生长季节而不同: 增温使生长季初期土壤微生物生物量碳显著降低,而使土壤微生物生物量氮显著提高;生长季中期增温使土壤微生物生物量碳和氮显著提高;而在生长季末期增温对土壤微生物生物量碳和氮的影响不显著.土壤微生物生物量碳和氮的根际效应也因不同生长季节而不同: 土壤微生物生物量碳和氮在生长季初期表现为负根际效应,而在生长季中期表现为正根际效应;在生长季末期,土壤微生物生物量碳表现为负根际效应,土壤微生物生物量氮则表现为正根际效应.增温在生长季初期使土壤微生物生物量碳和氮的根际效应显著提高,而在生长季中期和末期使土壤微生物生物量碳和氮的根际效应降低.本研究初步阐明了气候变暖背景下高寒灌丛根际和非根际土壤生物学过程变化机理.  相似文献   

19.
连作障碍与根际微生态研究 Ⅰ. 根系分泌物及其生态效应   总被引:1,自引:0,他引:1  
作物、蔬菜、果树以及苗木长期连作后,皆出现生长衰退和产量降低。许多研究结果表明,连作条件下土壤生态环境对植物生长有很大的影响,尤以植物残体与病原微生物的分解产物,对植物有致毒作用,并影响植物根系分泌物正常代谢,以致于发生自毒作用。本文围绕根系分泌物与根际微生态的相互关系,系统地介绍连作障碍条件下,影响根系分泌物的环境因素(土壤空气、湿度、养分与微生物)、活性物质(自身毒素、残体分解物、微生物产生毒素)、土壤病原菌等的根际效应,为深入研究根系分泌物与连作障碍的相互作用机制提供启示。  相似文献   

20.
为探讨热带云雾林主要优势树种根际土壤微生物量碳氮含量的季节动态规律, 于2019年2月—12月, 采用抖落法采集3种优势树种岭南青冈(Cyclobalanopsis championii)、罗浮锥(Castanopsis fabri)、细枝柃(Eurya loquaiana)根际和非根际土壤样品, 对土壤微生物量碳氮季节动态变化进行研究, 并分析不同优势树种土壤微生物量碳氮的根际效应以及与土壤养分及土壤水分的关系。结果表明: (1)不同优势树种根际土壤微生物量碳、氮含量动态变化规律明显, 峰值出现在雨季的8月, 根际土壤微生物量碳含量变幅为188.68—322.75 mg·kg-1, 氮含量变幅为104.02—184.44 mg·kg-1。(2)不同优势树种根际土壤微生物量碳氮比的季节动态变幅在1.60—2.01之间, 其季节动态呈“V”字型变化趋势; 而非根际土壤微生物量碳氮比的季节动态变幅在1.63—2.10之间, 且呈“N”字型变化趋势。(3)土壤微生物量碳、氮根际效应均表现为正效应, 且细枝柃根际效应大于岭南青冈和罗浮锥。土壤微生物量碳、氮与土壤有机碳、全氮呈显著正相关性。综合分析表明, 热带云雾林主要优势树种根际土壤微生物碳氮含量显著高于非根际, 根际效应显著, 具有明显的季节动态变化; 细枝柃对土壤微生物量富集和截留效应更大, 有利于养分累积。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号