首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 148 毫秒
1.
采用RT-PCR法从新西兰大白兔卵巢中克隆出BMP15基因部分cDNA片段,经blast分析后,发现其与猪、牛、绵羊、山羊、人和小鼠的同源性达到了83%—90%。同时,利用实时荧光定量RT-PCR方法检测了BMP15 mRNA在卵母细胞体外成熟培养过程中(IVM)的表达变化情况,结果表明:在兔卵母细胞体外成熟过程中,该基因在未成熟卵母细胞中表达水平较低,在培养16 h其表达丰度达到峰值,并与卵丘扩展时间相一致,随后下降,推测BMP15可能在兔卵丘细胞扩展中发挥重要作用。  相似文献   

2.
采用RT-PCR法从新西兰大白兔卵巢中克隆出BMP15基因部分cDNA片段,经blast分析后,发现其与猪、牛、绵羊、山羊、人和小鼠的同源性达到了83%-90%。同时,利用实时荧光定量RT-PCR方法检测了BMP15mRNA在卵母细胞体外成熟培养过程中(IVM)的表达变化情况,结果表明:在兔卯母细胞体外成熟过程中,该基因在未成熟卵母细胞中表达水平较低,在培养16h其表达丰度达到峰值,并与卵丘扩展时间相一致,随后下降,推测BMP15可能在兔卵丘细胞扩展中发挥重要作用。  相似文献   

3.
研究促卵泡激素(FSH),人绒毛膜促性腺激素(hCG)对昆明白小鼠卵母细胞成熟和卵丘扩展的影响,以及体外培养时卵丘扩展与卵母细胞成熟之间的关系,FSH可以明显促进次黄嘌吟(HX)抑制条件下的卵丘-卵母细胞复合体CEO卵母细胞成熟及卵丘扩展,其最佳作用剂量为100IU/L,且FSH作用30分钟即可以使CEO获得恢复减数分裂的信息,在HX存在的条件下,FSH处理后10hr,CEO卵丘明显扩展,而生发泡破裂(GVBD)则在16-20hr明显增加,所有卵丘未扩展的CEO中卵母细胞均未发生GVBD,低剂量hCG单独或与FSH共同存在,对CEO卵母细胞成熟及卵丘扩展均无明显影响;高剂量hCG可以部分抑制FSH对卵母细胞成熟的促进作用,结果表明:FSH明显促进CEO卵母细胞成熟及卵丘扩展,而hCG却不具有此作用,体外培养条件下(含次黄嘌呤),卵丘扩展是卵母细胞成熟的前提条件,但卵母细胞成熟并不需要卵丘完全扩展。  相似文献   

4.
动物体内卵泡排卵前促黄体素(luteinizing hormone, LH)诱导了卵丘颗粒细胞扩散,并启动卵母细胞恢复减数分裂。普遍认为,卵泡壁层颗粒细胞表达LH受体,卵母细胞及其周围卵丘细胞不表达LH受体,LH通过作用于卵泡壁层颗粒细胞产生信号分子,这些信号分子作用于卵丘颗粒细胞介导了LH生物作用。然而,一直以来,关于排卵前介导LH作用而诱导卵母细胞成熟的机制一直存在争议。目前研究认为,LH作用于卵泡壁层颗粒细胞后产生了EGF类因子,并与颗粒细胞的受体结合,促进了卵母细胞的成熟和发育。由于体外成熟的卵丘卵母细胞复合体来源于生长卵泡,其卵丘颗粒细胞EGF类因子信号系统不完善,目前的体外成熟培养体系难以模拟卵泡内的生理环境,导致卵母细胞体外发育能力较差,限制了这些卵母细胞的利用效率。本文综述了颗粒细胞EGF类因子信号系统、EGF类因子在调控卵母细胞成熟中的作用及对卵母细胞发育能力的影响,为优化卵母细胞体外成熟培养体系,完善卵丘颗粒细胞的EGF类因子的信号系统,进而提高卵母细胞体外成熟效率提供理论依据。  相似文献   

5.
研究了蛋白质合成抑制剂亚胺环己酮 (CHX)对猪卵母细胞体外成熟过程中的GVBD、染色质凝集、MⅡ期成熟及卵丘细胞扩展的作用。结果表明 :( 1)培养液中添加CHX ,可抑制卵母细胞GVBD的发生 ,而且此作用是浓度依赖性的 ,但CHX的抑制效果是完全可逆的 ;( 2 )在含 10 μg/mlCHX液中分别培养 0、 6、 12和 2 4h后转入正常培养液再继续培养至 4 8h ,卵母细胞成熟率分别为 84 1%、 77 1%、 4 8 9%和 2 7 8% ;( 3 )正常培养液中培养 0、 6、 12、 2 4、 3 6和 4 8h后 ,再转入浓度为 10 μg/mlCHX液中继续培养至 4 8h ,卵母细胞成熟率分别为 0、 0、 0、 3 1 3 %、 65 4 %和 79 5 % ;( 4 )CHX对卵丘细胞扩展的影响随培养时间延长而增强 ,在CHX中处理时间为 16h或更长 ,完全抑制卵丘细胞的扩展  相似文献   

6.
HeLa细胞表达分泌重组eGFP-DPF-1在卵母细胞上的定位   总被引:1,自引:0,他引:1  
将兔输卵管蛋白(DPF-1)基因连结于增强型绿色荧光蛋白(eGFP)基因5′端,构建了真核表达重组质粒(pEGFP-N1/DPF-1),转染HeLa细胞,获得稳定表达分泌融合蛋白eGFP-DPF-1的HeLa细胞株。该融合蛋白呈现的分子量达120 KD,提示经翻译后修饰。取兔卵母细胞-卵丘细胞复合物(COC)、去除卵丘细胞后的卵母细胞或输卵管内的卵母细胞,与该株细胞共培养或培养于该株细胞条件培液中,观察兔输卵管蛋白在兔卵母细胞上的分布。结果显示DPF-1大量结合于卵母细胞透明带,先结合于透明带内层,然后维持在内层多外层少的分布状态上;在卵母细胞质膜表面则呈点状均匀分布。DPF-1在卵母细胞上的分布不受其周围颗粒细胞的阻碍,且颗粒细胞上未见有DPF-1结合的痕迹。本实验首次证实体外真核细胞表达分泌的输卵管蛋白能与卵母细胞结合,并借助绿色荧光蛋白作为示踪信号体外直接观察到该表达产物在卵母细胞上的动态分布,为进一步深入分析输卵管蛋白的功能提供了线索,也为研究输卵管内其他蛋白在配子/早胚上定位提供了可行的办法。  相似文献   

7.
将兔输卵管蛋白(DPF-1)基因连结于增强型绿色荧光蛋白(eGFP)基因5′端,构建了真核表达重组质粒(pEGFP-N1/DPF-1),转染HeLa细胞,获得稳定表达分泌融合蛋白eGFP—DPF-1的HeLa细胞株。该融合蛋白呈现的分子量达120KD,提示经翻译后修饰。取兔卵母细胞-卵丘细胞复合物(COC)、去除卵丘细胞后的卵母细胞或输卵管内的卵母细胞,与该株细胞共培养或培养于该株细胞条件培液中,观察兔输卵管蛋白在兔卵母细胞上的分布。结果显示DPF-1大量结合于卵母细胞透明带,先结合于透明带内层,然后维持在内层多外层少的分布状态上;在卵母细胞质膜表面则呈点状均匀分布。DPF-1在卵母细胞上的分布不受其周围颗粒细胞的阻碍,且颗粒细胞上未见有DPF-1结合的痕迹。本实验首次证实体外真核细胞表达分泌的输卵管蛋白能与卵母细胞结合,并借助绿色荧光蛋白作为示踪信号体外直接观察到该表达产物在卵母细胞上的动态分布,为进一步深入分析输卵管蛋白的功能提供了线索,也为研究输卵管内其他蛋白在配子/早胚上定位提供了可行的办法。  相似文献   

8.
影响猪体细胞核移植重构胚体外发育的若干因素   总被引:1,自引:0,他引:1  
以卵丘细胞为核供体细胞组成重构胚,卵裂率达到56.7%,发育至桑椹胚达11.7%、孵化囊胚率为6.7%,显著高于成纤维细胞组成的重构胚(p<0.05)。我们研究了卵母细胞的采集方法,激活方法和卵龄对卵丘细胞核移植重构胚体外发育的影响。以血清饥饿法将卵丘细胞诱导至GO或G1期,抽吸法/解剖法采集卵母细胞,体外培养33或44 h,将卵丘细胞置于去核卵母细胞的卵周隙中,重构胚以钙离子载体A23817或电脉冲结合6-DMAP激活处理,体外培养6天,结果表明,卵母细胞采集方法、激活液中细胞松弛素(CB)并不影响重构胚的发育(以卵龄44h的卵母细胞为受体);而以电脉冲结合6-DMAP激活处理能提高重构胚发育能力(以卵龄33 h的卵母细胞为受体)(p<0.05)。本研究显示,以电脉冲结合6-DMAP激活卵丘细胞重构胚,能在体外发育至囊胚  相似文献   

9.
卵丘在卵母细胞成熟中的作用   总被引:5,自引:0,他引:5  
卵丘是指在卵母细胞外周并与之进行代谢联系的颗粒细胞群;卵丘对于卵母细胞成熟有极其重要的作用。主要表现在卵丘参与维持卵母细胞减数分裂阻滞,诱导卵母细胞减数分裂恢复、支持卵母细胞细胞质的成熟。卵丘形态和卵丘扩展影响卵母细胞成熟。了解卵丘在卵母细胞成熟中的作用有助于帮助人们进一步揭示哺乳动物卵母细胞成熟的机制。  相似文献   

10.
猪体细胞核移植重构胚的体外发育(英文)   总被引:2,自引:0,他引:2  
以卵丘细胞为核供体细胞组成重构胚 ,卵裂率达到 5 6.7% ,发育至桑椹胚率达到1 1 .7% ,囊胚率为 6.7% ,显著高于成纤维细胞重构胚 (P <0 .0 5 )。本文还研究了卵母细胞的采集方法、激活程序和卵龄对卵丘细胞核移植重构胚体外发育的影响。以血清饥饿法将卵丘细胞诱导至G0 G1 期 ,抽吸法 解剖法采集卵母细胞 ,体外培养 3 3~ 44h ,将卵丘细胞放至去核卵母细胞的卵周隙中 ,重构胚以钙离子载体A2 3 81 7或电脉冲结合 6 DMAP激活处理 ,体外培养 6d。研究表明 ,卵母细胞采集方法、激活液中细胞松弛素 (CB)、激活程序并不影响重构胚的发育 (以卵龄 44h的卵母细胞为受体 ) ;而以电脉冲结合 6 DMAP激活处理能提高重构胚发育能力 (以卵龄 3 3h的卵母细胞为受体 ) (P <0 .0 5 )。本研究显示 ,以电脉冲结合 6 DMAP激活卵丘细胞重构胚 ,体外能发育至囊胚  相似文献   

11.
Bone morphogenetic protein 15 (BMP15) and growth differentiation factor 9 (GDF9) belong to the TGF-beta superfamily and are involved in the regulation of folliculogenesis. Though there are many reports concerning the expression and regulation of GDF9 in the process of oocyte maturation, expression of BMP15 during oocyte maturation is still not clearly understood. It has been reported that BMP15 and GDF9 expression is important in folliculogeneiss and that the regulation of these two proteins is complex and species-specific. In this report, we investigated the expression of BMP15 and GDF9 genes during in vitro maturation (IVM) at 0, 6, 12, 18, 24, 30, 36, 42 and 48 h for porcine oocytes. Porcine GDF9 gene was found to be highly expressed in immature oocytes and declined slowly during the oocyte maturation process. BMP15mRNA and its encoded protein were expressed at low levels in immature oocytes and increased to the highest level at 18 h of IVM, which coincides with the time of cumulus cell expansion. Thus, these two genes were differentially expressed during the oocyte maturation process and BMP15 is specifically expressed during cumulus cell expansion in porcine oocytes.  相似文献   

12.
13.
14.
15.
Bone morphogenetic protein 15 (BMP15) and growth differentiation factor 9 (GDF9) are oocyte-specific growth factors that appear to play key roles in granulosa cell development and fertility in most mammalian species. We have evaluated the role(s) of these paracrine factors in the development and function of both the cumulus cells and oocytes by assessing cumulus expansion, oocyte maturation, fertilization, and preimplantation embryogenesis in Gdf9+/-Bmp15-/- [hereafter, double mutant (DM)] mice. We found that cumulus expansion, as well as the expression of hyaluronon synthase 2 (Has2) mRNA was impaired in DM oocyte-cumulus cell complexes. This aberrant cumulus expansion was not remedied by coculture with normal wild-type (WT) oocytes, indicating that the development and/or differentiation of cumulus cells in the DM, up to the stage of the preovulatory luteinizing hormone (LH) surge, is impaired. In addition, DM oocytes failed to enable FSH to induce cumulus expansion in WT oocytectomized (OOX) cumulus. Moreover, LH-induced oocyte meiotic resumption was significantly delayed in vivo, and this delayed resumption of meiosis was correlated with the reduced activation of mitogen-activated protein kinase (MAPK) in the cumulus cells, thus suggesting that GDF9 and BMP15 also regulate the function of cumulus cells after the preovulatory LH surge. Although spontaneous in vitro oocyte maturation occurred normally, oocyte fertilization and preimplantation embryogenesis were significantly altered in the DM, suggesting that the full complement of both GDF9 and BMP15 are essential for the development and function of oocytes. Because receptors for GDF9 and BMP15 have not yet been identified in mouse oocytes, the effects of the mutations in the Bmp15 and Gdf9 genes on oocyte development and functions must be produced indirectly by first affecting the granulosa cells and then the oocyte. Therefore, this study provides further evidence for the existence and functioning of an oocyte-granulosa cell regulatory loop.  相似文献   

16.
Bone morphogenetic protein (BMP) 15 and growth differentiation factor (GDF) 9 are oocyte-secreted growth factors that are critical local regulators of ovarian function and may be involved in preovulatory cumulus expansion. As cumulus expansion occurs in response to the ovulatory surge, the present study was designed: 1) to investigate whether GDF9 and BMP15 are regulated by gonadotropins in the mouse ovary; and 2) to visualize changes in both GDF9 and BMP15 immunostaining in response to gonadotropins. Immature 21-day-old mice were sequentially treated with recombinant human FSH (r-hFSH), 5 IU daily, at Days 21, 22, and 23 of life, then injected with 5 IU hCG at Day 24 of life. In response to r-hFSH, steady-state Bmp15 mRNA expression levels increased in both total ovaries and cumulus-oocyte complexes, whereas Gdf 9 mRNA levels did not. In addition, BMP15 protein levels increased in total ovaries. The GDF9 immunostaining was exclusively seen in growing oocytes in both control and gonadotropin-treated mice, whereas that of BMP15, which was also primarily seen in growing oocytes, exhibited important changes in response to gonadotropins. Strong BMP15 immunostaining was observed in the follicular fluid of atretic antral follicles after FSH treatment and in expanded, but not in compact, cumulus cells after hCG. The present results show for the first time that BMP15 levels increase during gonadotropin-induced follicular development, in parallel with oocyte maturation, and that this local factor is likely involved in cumulus expansion as previously suggested by studies in Bmp15-null mice.  相似文献   

17.
The effects of cumulus cell removal and centrifugation of maturing bovine oocytes on nuclear maturation and subsequent embryo development after parthenogenetic activation and nuclear transfer were examined. Removal of cumulus cells at 4, 8, and 15 hr after in vitro maturation (IVM) or the centrifugation of denuded oocytes had no effect on maturation rates. Oocytes treated at 0 hr of IVM had a lower expulsion rate (50%) of the first polar body (PB1). The removal of cumulus cells and centrifugation affected the pattern of spindle microtubule distribution and division of chromosomes. There were almost no spindle microtubules allocated to PB1 and the spindles were swollen in anaphase I and telophase I oocytes. Approximately 20% of PB1 oocytes contained tripolar or multipolar spindles. After activation, oocytes denuded with or without centrifugation at 8 hr of IVM resulted in the lowest rate of development (3.0%). Denuded oocytes at 4, 15, and 24 hr of IVM with centrifugation or not resulted in similar blastocyst development rates (9.6%-13.2%). However, centrifugation of oocytes denuded at the beginning of IVM resulted in lower blastocyst development rate (8.1%, P < 0.05) than the noncentrifuged oocytes (17.3%). After nuclear transfer, the blastocyst development rates of oocytes denuded and centrifuged at 0, 4, and 8 hr of IVM were not different when compared to the same patch of noncentrifuged oocytes. However, oocytes denuded and centrifuged at 15 hr of IVM resulted in lower (P < 0.05) blastocyst development rates than the noncentrifuged oocytes. The results of this study suggest that removal of cumulus cells and centrifugation of denuded oocytes affect the spindle pattern. Embryo development of denuded and centrifuged oocytes may differ depending on the time of removal of cumulus cells.  相似文献   

18.
Mammalian oocytes are deficient in their ability to carry out glycolysis. Therefore, the products of glycolysis that are necessary for oocyte development are provided to oocytes by companion cumulus cells. Mouse oocytes secrete paracrine factors that promote glycolysis in cumulus cells. The objective of this study was to identify paracrine factors secreted by oocytes that promote glycolysis and expression of mRNA encoding the glycolytic enzymes PFKP and LDHA. Candidates included growth differentiation factor 9 (GDF9), bone morphogenetic protein 15 (BMP15) and fibroblast growth factors (FGFs). Bmp15-/- and Gdf9+/- Bmp15-/- (double mutant, DM) cumulus cells exhibited reduced levels of both glycolysis and Pfkp and Ldha mRNA, and mutant oocytes were deficient in promoting glycolysis and expression of Pfkp and Ldha mRNA in cumulus cells of wild-type (WT) mice. Alone, neither recombinant BMP15, GDF9 nor FGF8 promoted glycolysis and expression of Pfkp and Ldha mRNA in WT cumulus cells. Co-treatment with BMP15 and FGF8 promoted glycolysis and increased expression of Pfkp and Ldha mRNA in WT cumulus cells to the same levels as WT oocytes; however, the combinations of BMP15/GDF9 or GDF9/FGF8 did not. Furthermore, SU5402, an FGF receptor-dependent protein kinase inhibitor, inhibited Pfkp and Ldha expression in cumulus cells promoted by paracrine oocyte factors. Therefore, oocyte-derived BMP15 and FGFs cooperate to promote glycolysis in cumulus cells.  相似文献   

19.
Developmental competence of in vitro matured (IVM) oocytes needs to be improved and this can potentially be achieved by adding recombinant bone morphogenetic protein 15 (BMP15) or growth differentiation factor (GDF9) to IVM. The aim of this study was to determine the effect of a purified pro-mature complex form of recombinant human BMP15 versus the commercially available bioactive forms of BMP15 and GDF9 (both isolated mature regions) during IVM on bovine embryo development and metabolic activity. Bovine cumulus oocyte complexes (COCs) were matured in vitro in control medium or treated with 100 ng/ml pro-mature BMP15, mature BMP15 or mature GDF9 +/− FSH. Metabolic measures of glucose uptake and lactate production from COCs and autofluorescence of NAD(P)H, FAD and GSH were measured in oocytes after IVM. Following in vitro fertilisation and embryo culture, day 8 blastocysts were stained for cell numbers. COCs matured in medium +/− FSH containing pro-mature BMP15 displayed significantly improved blastocyst development (57.7±3.9%, 43.5±4.2%) compared to controls (43.3±2.4%, 28.9±3.7%) and to mature GDF9+FSH (36.1±3.0%). The mature form of BMP15 produced intermediate levels of blastocyst development; not significantly different to control or pro-mature BMP15 levels. Pro-mature BMP15 increased intra-oocyte NAD(P)H, and reduced glutathione (GSH) levels were increased by both forms of BMP15 in the absence of FSH. Exogenous BMP15 in its pro-mature form during IVM provides a functional source of oocyte-secreted factors to improve bovine blastocyst development. This form of BMP15 may prove useful for improving cattle and human artificial reproductive technologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号